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ABSTRACT 

Convolutional Neural Network (CNN) promises automatic learning and less effort for hand-design heuristics in 
building an efficient pattern recognition system. It requires simple and minimal preprocessing stages for data preparation. 
These features enable CNN architecture to be applied to various pattern recognition applications. This paper proposes a four-
layered CNN architecture that caters to face recognition and finger-vein biometric identification case studies. The 
methodology applied in designing the network is discussed in detail. For face recognition, the design is evaluated on three 
facial image databases with different levels of complexities. These databases are AT&T, AR Purdue, and FERET. The same 
four-layered CNN architecture is also tuned for finger-vein biometric identification problems. The design performance is 
evaluated on finger-vein biometric database developed in-house, consisting of 81 subjects. The results obtained from these 
case studies are promising. For face recognition applications, 100%, 99.5%, and 85.16% accuracies were obtained for AT&T, 
AR Purdue, and FERET, respectively. On the other hand, the result obtained from the finger-vein biometric identification 
case study has 99.38% accuracy. The results have shown that the proposed design is feasible for any pattern recognition 
problem. 
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INTRODUCTION 

Pattern recognition continues to be an active area 
of research since half a century ago. The basic approach in 
pattern recognition is to transform raw images through a 
series of image processing algorithms before applying the 
final stage of classification. Examples of applications for 
pattern recognition include speech recognition, handwriting 
recognition, object recognition, etc. Figure 1 shows a 
common pattern recognition flow. The choice of sensors, 
preprocessing techniques, and decision-making techniques 
depends on the characteristics of the problem domain. 

In the conventional pattern recognition approach, 
the pattern recognition algorithms that are used to design a 
specific problem domain require tedious re-designing 
processes whenever the problem domain changes [1]. This 
problem can be a barrier in designing multimodal biometric 
systems since the pattern recognition flow for each 
biometric identifier requires specific algorithm 
determinations. For example, the work in [2] has shown that 
different preprocessing methods are required for different 
types of face databases, although the feature extraction and 
classification methods remain the same. 

One approach that could overcome the above 
problem is Convolutional Neural Network (CNN). CNN 
was proposed by LeCun et al. [3] in 1989. The superiority 
of CNN has been proved in a wide range of applications 
such as face detection [4, 5], face recognition [6, 7], gender 
recognition [8, 9], object recognition [10, 11], character 
recognition [12, 13], texture recognition [14], and more. 
CNN has several advantages. Firstly, it takes into account 

the two-dimensional (2-D) image topology of input 
changes. This makes CNN robust against changes of input 
patterns, including translation, scaling, and rotation. This 
robustness is due to the built-in invariance feature of  CNN 
which makes it resistant to distortion. Secondly, it combines 
segmentation, feature extraction, and classification in one 
trainable module in which the network’s feature extractors 
are formed automatically as they learn the samples 
adaptively. Thirdly, it accepts raw data with minimal 
preprocessing compared to the conventional pattern 
recognition approach. Finally, it applies the concept of 
sharedweights, which has reduced significantly the number 
of parameters compared to the fully-connected multilayer 
perceptron (MLP). Figure-2 shows an example of CNN 
being used for handwriting recognition application. 

CNN can be used for various pattern recognition 
applications using network architecture. This has been 
proved in [15], which applied five-layered CNN for 
character and face recognition problems. Another example 
as reported in [16] applied six-layered CNN to solve face 
and license plate recognition problems. These works led to 
the motivation of this paper. In this paper, four-layered 
CNN architecture is designed for two case studies, namely 
face recognition and finger-vein biometric identification. 
The only difference is the number of feature maps at each 
layer that need to be adjusted according to the problem 
domain at hand. 

The remainder of the paper is organized as 
follows. In section 2, the methodology of the proposed work 
is discussed. This is followed by a discussion of the 
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recognition of human faces and results in Section 3.1. In 
Section 3.2, the finger-vein biometric identification results 

are discussed in detail. The final section concludes this 
paper. 

 

 
 

Figure-1. Typical pattern recognition flow. 
 

 
 

Figure-2. Example of CNN architecture used for handwriting recognition application [1]. 
 
2. METHODOLOGY 

The CNN architecture proposed for both case 
studies is a four-layered CNN. The number of layers in 
these case studies is much reduced from the basic CNN 
architecture in [1]. The idea of reducing the number of 
layers, known as fusion convolution or subsampling 
concept, was inspired by Simard et al. in 2002 [17], and the 
mathematical model was proposed by Mamalet and Garcia 
in 2012 [18]. Mamalet and Garcia applied the concept to 
recognize characters from the MNIST database. However, 
examples in this paper adapt the concept to recognize faces 
and finger-vein samples. Details of the process can be 
referred to in [19]. 

The numbers of feature maps at each layer are 
different for each problem domain. The number of maps 
also depends on the level of complexity of the database 
applied. The number of feature maps at each layer is 
optimally determined using a 10-fold cross-validation 
technique. Cross-validation technique is a popular 
statistical approach that is appealing for designing large 
neural network with good generalization as a goal [20]. This 
technique guides the designer in the selection of the best 
model (best number of hidden neurons or feature maps at 
each layer), best parameter, and when to stop training [20]. 
Through cross-validation, we can evaluate a classifier 
experimentally to estimate the performance of the selected 
classifier on unseen data (the test set) [21]. Generally, the 
total samples will be divided into 20% and 80% portions. 

The 20% portion will form the test dataset while the 
remaining 80% samples are used for the 10-fold cross 
validation technique. The 80%samples are then divided into 
10 folds equally in which 9 of the folds are used to train the 
network while 1 fold is used to validate the training process. 
This method is repeated using different folds as the 
validation set. Figure-3 shows the best model for the AT&T 
database. 

The neurons at the output layer represent the 
number of subjects in the AT&T database. Winner-takes-all 
rule is applied in determining the identity of the query 
subject. Winner-takes-all rule is a concept that assigns the 
maximum value obtained at the output layer as a firing 
neuron, or “winner,” while the other neurons remain 
inactive. Total error is calculated between the target value 
and the output value. Next, the total error is backpropagated 
to adjust the current weight values. Throughout the training 
process, the total error in which the current weight values 
identifies query samples better than before will become 
smaller. Connection between layer C3 and the output layer 
is full-connection without any similarity measure applied 
compared to other existing works reported in [15, 22-24]. 
The absence of similarity measure and the implementation 
of winner-takes-all rule has sped up the training process. 
Mean square error is applied as the error function. The 
learning algorithm applied in this work is an enhanced 
version of Stochastic Diagonal Levenberg Marquardt, 
which is out of the scope of this paper. 
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Figure-3. The best model for the AT&T face database. 
 

After determining the best model of CNN, the 
partial connection is determined between the first two 
layers. The purpose of partial connection is to avoid the 
same features being selected for classification and also to 
reduce network parameters (number of neurons, trainable 
parameters, and connections). This method was first 
proposed in [1] with random types of connections. In this 
paper, we propose a way to determine optimum partial 
connection scheme using a 10-fold cross validation 
technique. Figure-4 explains the flow of determining an 
optimum partial connection scheme. Table-1 shows variant 
types of connections between the C1 and C2 layers. After 
implementing the flow presented in Figure-4, the optimum 
partial connection scheme is obtained for the AT&T face 
database as shown in Table-2. Figure-5 depicts an example 
of connections for feature map C2 [0]. 

 

 
 

Figure-4. Methodology of determining the optimum 
partial connection scheme. 
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Table-1. Variant types of connections between C1 and C2 layer. 
 

Conn (0) Conn (1) Conn (2) Conn (3) Conn (4) Conn (5) 

× 0 0 × × 0 

× × 0 0 × × 

× × × × × × 

0 × × 0 × × 

0 0 × × 0 × 

 
Table-2. The optimum partial connection scheme 

for AT&T face database. 
 

 
 

 
 

Figure-5. Example of connections for C2 [0]. 

 
 
3. RESULTS AND PERFORMANCE 

The performance of the proposed CNN is 
evaluated for recognition of human faces and also 
identification of finger-vein biometric samples. Two case 
studies are conducted in the experiment to prove that the 
proposed design is viable for various case studies. For the 
best model in each case study, optimum partial connection 
and accuracy is presented. The total samples for each 
database or case study are separated into 80% and 20% 
portions representing training and test samples respectively. 
The details of selecting the best model are beyond the scope 
of this paper. The methodology of selecting the best model 
can be referred to in[19]. 
 
3.1 Recognition of human faces 

The evaluation of the face recognizer is carried out 
using standard face databases, which include AT&T, AR 
Purdue, and FERET. In the following section, information 
and results for each database are discussed separately.  
 
3.1.1 AT&T database 

AT&T contains images of “moderate challenge,” 
which indicates a moderate degree of variation in poses (up 
to 20 degrees), lighting (dark homogenous background), 
facial expressions, and head positions. Figure-6 illustrates 
the samples and Figure-7 depicts the preprocessing stages 
for AT&T. The best model and optimum partial connection 
scheme for AT&T can be seen in Figure-3 and Table-2. The 
experimental setup and accuracy obtained is outlined in 
Table-3. The accuracy achieved is 100.00%. Other existing 
works such as [25, 26] also report 100.00% accuracy. This 
is expected since the database is less challenging. 
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Figure-6. Sample of images from AT&T database. 
 

 
 

Figure-7. Preprocessing stages for AT&T database. 
 
Table-3. Experimental setup and performance for AT&T 

database. 
 

CNN model parameters Results 

Architecture (C1-C2-C3 
feature maps) 

5-14-60 

Normalization and weight 
initialization method 

Min-max and 
Gaussian weight 

Optimum input image size 56×46 

No. of train samples 320 

No. of test samples 80 

Accuracy 100.00% 

 
3.1.2 AR Purdue 

On the other hand, AR Purdue represents images 
of “complex challenge,” which indicates a high degree of 
variation in facial expressions, lighting (illumination), and 
partial occlusions (wearing sunglasses or scarf). Figure 8 
illustrates the samples and Figure 9 depicts the 
preprocessing stages for AR Purdue. The best model and 
optimum partial connection scheme for AR Purdue can be 
seen in Figure 10 and Table 4. The experimental setup and 
accuracy obtained is stated in Table 5. The accuracy 
achieved is 99.50%, which outperforms other existing 
works [27-29] using the same database and number of 
subjects. 
 

 
 

Figure-8. Sample of images from AR Purdue database. 

 

 
 

Figure-9. Preprocessing stages for AR Purdue database. 
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Figure-10. Best model for AR Purdue database (15-45-130). 
 

Table-4. Optimum partial connection for AR Purdue database. 
 

 
 

Table-5. Experimental setup and performance for AR Purdue database. 
 

CNN model parameters Results 

Architecture (C1-C2-C3 feature maps) 15-45-130 

Normalization and weight initialization method Z-score and Gaussian weight 

Optimum input image size 56×46 

No. of train samples 2000 

No. of test samples 600 

Accuracy 99.50% 

3.1.3 FERET database 
The “extreme challenge” database can be found in 

FERET, which includes a high degree of variation in facial 
expressions, appearances, illumination, and poses (up to 90 
degrees). Figure-11 illustrates the samples and Figure-12 
depicts the preprocessing stages for FERET database. The 
best model and optimum partial connection scheme for 
FERET can be seen in Figure-13 and in Table-6. The 
experimental setup and accuracy obtained is stated in 
Table-7. The accuracy achieved is 85.16%, which is still 
within the same range as other existing works [2, 30] with 
a similar database and number of subjects. 

 
 

Figure-11. Sample of images from FERET database. 
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Figure-12. Preprocessing stages for FERET database. 
 

 
 

Figure-13. Best model for FERET database (15-47-130). 
 
 

 
Table-6. Optimum partial connection for FERET database. 

 

 
 

 
 
 

 
 



               VOL. 10, NO. 12, JULY 2015                                                                                                                                   ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      5305 

Table-7. Experimental setup and performance for FERET 
database. 

 

CNN model parameters Results 

Architecture (C1-C2-C3 
feature maps) 

15-47-130 

Normalization and weight 
initialization method 

Z-score and Gaussian 
weight 

Optimum input image size 56×46 

Learning Results 

No. of train samples 504 

No. of test samples 108 

Performance Results 

Accuracy 85.16% 

 
The results achieved by the three databases prove 

that the proposed four-layered CNN architecture could be 
adjusted according to the complexity level of a particular 
database. Exploring other existing algorithms for different 
databases is not required in CNN as it would be in 
conventional methods. The only method needed involves 
adjusting the number of feature maps at each layer and 
determining an optimum partial connection scheme at the 
first two layers of CNN. The results presented in this paper 
can be used as a guide with which to recognize faces from 
other databases as long as the complexity level of such 
databases is known. For example, in order to recognize 
images from JAFFE database, the 5-14-60 model for the 
AT&T database can be used.  
 
3.2 Finger-vein biometric identification 

The second case study is finger-vein biometric 
identification. To the best of our knowledge, this case is the 
first attempt to apply CNN to classify finger-vein samples. 
The database is developed in-house by VeCAD Laboratory, 
Universiti Teknologi Malaysia, and consists of 81 subjects 
with 10 samples each on 6 different fingers. The age group 
of participants is between 18 and 50 years and their 

occupations range from staffs to university students. The 
samples of the database are depicted in Figure-14 and 
preprocessing methods are depicted in Figure-15. These 
samples are captured using fixed illumination of near-
infrared (NIR) sources. Hence, inappropriate lighting 
occurs in some of the samples. In conventional finger-vein 
biometric approach, inappropriate lighting can cause 
deterioration of classification accuracy. However, due to 
the special features of CNN in learning the samples 
adaptively, some of the typical preprocessing methods are 
not required, such as noise removal, image enhancement, 
segmentation, and binarization techniques. 

The best model and optimum partial connection 
scheme for the VeCAD-UTM database is portrayed in 
Figure-16 and Table-8. The experimental setup and 
accuracy obtained is stated in Table-9. The accuracy 
achieved is 99.38%, which stands at the same level as other 
existing works [31-33]. 
 

 
 

Figure-14. Sample of images from VeCAD-UTM 
database. 

 
 

Figure-15. Preprocessing methods for finger-vein biometric identification case study. 
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Figure-16. Best model for VeCAD-UTM finger-vein database (5-13-50). 
 

Table-8. Optimum partial connection for VeCAD-UTM 
finger-vein database. 

 

 
 

Table-9. Experimental setup and performance for 
VeCAD-UTM finger-vein database. 

 

CNN model parameters Results 

Architecture (C1-C2-C3 
feature maps) 

5-13-50 

Normalization and weight 
initialization method 

Z-score and uniform 
weight 

Optimum input image size 55×67 

No. of train samples 648 

No. of test samples 162 

Accuracy 99.38% 

 
The results obtained from this case study have 

proved that implementing CNN on finger-vein samples is 
feasible. It has also proved that the proposed CNN 
architecture can be generalized to other case studies, such 
as the finger-vein biometric identification problem, and it 
has the potential to be generalized to other types of pattern 
recognition problems too. 
 
4. CONCLUSIONS 

In this article, two types of case studies have been 
used to prove that the proposed CNN architecture is viable 
in generalizing its structure to other pattern recognition 
problems. The first case study on face recognition has 
shown that the four-layered CNN could be adjusted in terms 
of the number of feature maps at each layer to suit to the 

complexity level of such a database. The design is evaluated 
on three standard face databases, namely AT&T, AR 
Purdue, and FERET, which produce accuracies of 100.00%, 
99.50% and 85.16% respectively. The results on the AT&T 
and AR Purdue databases have outperformed other existing 
works. The CNN design has also been extended for the 
finger-vein biometric identification case study. Even 
though this is the first attempt of implementing CNN on 
finger-vein biometrics problems, the accuracy of 99.38% 
for 81 subjects has proved that the attempt is viable. From 
the results obtained from these two case studies, it can be 
concluded that the proposed CNN architecture applies to 
any kind of pattern recognition problem and can be adapted 
for a multimodal biometric approach. 
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