A Design Scheme of Energy Management, Control, Optimisation System for Hybrid Solar-Wind and Battery Energy Storages System

A Thesis Submitted for the Degree of Doctor of Philosophy

by

RANJIT SINGH SARBAN SINGH

ELECTRONIC & COMPUTER ENGINEERING DEPARTMENT
COLLEGE OF ENGINEERING, DESIGN AND PHYSICAL SCIENCES
BRUNEL UNIVERSITY LONDON
UNITED KINGDOM

OCTOBER 2016
ABSTRACT

Hybrid renewable energy system was introduced to improve the individual renewable energy power system’s productivity and operation-ability. This circumstance has led towards an extensive technological study and analysis on the hybrid renewable energy system. The extensive technological study is conducted using many different approaches, but in this research the linear programming, artificial intelligence and smart grid approaches are studied.

This thesis proposed a complete hardware system development, implementation and construction of real-time DC Hybrid Renewable Energy System for solar-wind-battery energy source integrated with grid network support. The proposed real-time DC HRES hardware system adopts the hybrid renewable energy system concept which is composed of solar photovoltaic, wind energy system, battery energy storage system and grid network support. The real-time DC HRES hardware system research work is divided into three stages. Stage 1 involves modelling and simulation of the proposed system using MATLAB Simulink/Stateflow software. During this stage, system’s methodological design and development is emphasised. The obtained results are considered as fundamental finding to design, develop, integrate, implement and construct the real-time DC HRES hardware system. Stage II is designing and developing the electronic circuits for the real-time DC HRES hardware system using PROTEUS software. Real time simulation is performed on the electronic circuits to study and analyse the circuit’s behaviour. This stage also involves embedded software application development for the microcontroller PIC16F877A. Thus, continuous dynamic decision-making algorithm is developed and incorporated into microcontroller PIC16F877A. Next, electronic circuits and continuous dynamic decision-making algorithm are integrated with the microcontroller PIC16F877A as a real-time DC HRES hardware system to perform real time simulation. The real-time DC HRES hardware system simulation results are studied, analysed and compared with the results obtained in Stage 1. Any indifference between the obtained results in Stage 1 and Stage 2 are analysed and necessary changes are made. Stage 3 involves integrating, implementation and construction of real-time DC HRES. The continuous dynamic decision-making algorithm is also incorporated into the real microcontroller PIC16F877A development board. Real-time DC HRES’s
experimental results have successfully demonstrated the system’s ability to perform supervision, coordination, management and control of all the available energy sources with lease dependency on the grid network. The obtained results demonstrated the energy management and optimisation of the available energy sources as primary power source deliver.
ACKNOWLEDGEMENTS

Firstly, I am grateful and highly indebted to the Ministry of Higher Education of Malaysia and Universiti Teknikal Malaysia Melaka (UTeM) for giving me the opportunity to pursue my PhD study at Brunel University London, United Kingdom.

Secondly, I would like to express my sincere gratitude to my supervisors, Dr Maysam Abbod and Professor Wamadeva Balachandran from Department of Electronic and Computer Engineering, Brunel University London for their undivided support, advice and help.

All of this would not have been possible without the morale support and encouragement from my family members, especially my parents, my brothers and by inlaws. I also would like to give a very big thank you to my beloved wife who stood with me, next to me throughout my PhD studies.

Last but not least, I would like to thank all the others who have known me either from Malaysia or the United Kingdom for their invaluable support for my meaningful journey.

Thank you all again, would not be possible with all the encouragement and support from everyone.
TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

ABBREVIATIONS

DECLARATION

CHAPTER 1

INTRODUCTION

1.1 POWER ELECTRONICS ADVANCEMENT

1.2 MOTIVATIONS

1.3 PROBLEM STATEMENTS

1.4 AIM AND OBJECTIVES

1.5 RESEARCH METHODOLOGY

1.6 CONTRIBUTIONS TO KNOWLEDGE

1.7 THESIS STRUCTURE

1.8 LIST OF PUBLICATIONS

CHAPTER 2

LITERATURE REVIEW

2.1 OVERVIEW OF AVAILABLE RENEWABLE ENERGY SOURCES

2.2 HYBRID RENEWABLE ENERGY SYSTEM STRUCTURES

2.2.1 DC COUPLED-SYSTEMS

2.2.2 AC COUPLED-SYSTEMS

2.2.3 HYBRID COUPLED-SYSTEMS

2.3 COMPONENT DESCRIPTION

2.3.1 PHOTOVOLTAIC EQUIVALENT CELL

DESCRIPTION

2.3.2 WIND TURBINE SYSTEM DESCRIPTION

2.3.2.1 TURBINE SWEEP AREA

2.3.2.2 TIP SPEED RATIO

2.4 OTHER RELEVANT HRES SYSTEM COMPONENTS

2.4.1 CHARGE CONTROLLER

2.4.2 CHARGE CONTROLLER OPERATION

2.4.3 BATTERY ENERGY STORAGE SYSTEM

2.5 TECHNICAL REVIEWS

2.5.1 STANDALONE HRES – LINEAR

PROGRAMMING APPROACH

2.5.2 STANDALONE HRES – ARTIFICIAL INTELLIGENCE APPROACH

2.5.3 GRID-CONNECTED – LINEAR
PROGRAMMING APPROACH 41

2.5.4 GRID-CONNECTED – ARTIFICIAL INTELLIGENCE APPROACH 43

2.5.5 ENERGY MANAGEMENT SYSTEM – SMART GRID – RENEWABLE ENERGY SOURCES 43

2.6 SUMMARY 44

CHAPTER 3
MATLAB-SIMULINK MODELLING OF REAL-TIME DC HRES HARDWARE SYSTEM 46

3.1 REAL-TIME DC HRES HARDWARE SYSTEM DESIGNED MODEL 47

3.1.1 CENTRALISATION CONTROL PARADIGM 48

3.1.2 DISTRIBUTION CONTROL PARADIGM 48

3.1.3 HYBRIDIZATION CONTROL PARADIGM 48

3.2 MODELING VOLTAGE BASED SELF-INTERVENTION – SIMULINK 49

3.3 VOLTAGE BASED SELF-INTERVENTION – SIMULINK DESIGN 50

3.4 MODELING VOLTAGE SWITCHING SUBSYSTEM CONTROLLER – MATLAB SIMULINK/STATEFLOW 53

3.5 MODELING CIRCUIT BREAKER SWITCHING AND GROUP CONDITIONS– MATLAB SIMULINK/STATEFLOW 57

3.6 MODELING BESS CHARGING/DISCHARGING SWITCHING ALGORITHM - STATEFLOW 66

3.7 MODELING DC TO DC BOOST CONVERTER 72

3.8 MODELING DC TO AC INVERTER 73

3.9 REAL-TIME DC HRES HARDWARE SYSTEM MODELLING OVERVIEW 74

3.10 REAL-TIME DC HRES HARDWARE SYSTEM MODEL SIMULATION RESULTS 74

3.10.1 CONDITION A: PV = 12~15 Volt and WT = 12~15 Volt - DC HRES MODEL SIMULATION 75

3.10.1.1 BESS MODEL SIMULATION OUTPUT 77

3.10.2 CONDITION C: PV = 12~15 Volt and WT = 7~12 Volt - DC HRES MODEL SIMULATION 84

3.11 SIMULATION RESULTS OVERVIEW 86

3.12 SUMMARY 86

CHAPTER 4
DESIGN AND DEVELOPMENT METHODOLOGY FOR
7.2 FUTURE WORK 234
REFERENCES 236
APPENDIXES 248
LIST OF TABLES

Table 2.1 : Types of available renewable energy sources advantages and disadvantages 15
Table 2.2 : Renewable energy sources and corresponding RETs 18
Table 3.1 : Solar-wind renewable energy sources analogue and digital voltages quantification 52
Table 3.2 : Voltage combination for relay switching 57
Table 3.3 : Solar-wind renewable energy sources pairing 63
Table 4.1 : Voltage based self-intervention ADC connectivity to the microcontroller PIC16F877A 95
Table 4.2 : Relay switching and control module connectivity to microcontroller PIC16F877A ports and output 104
Table 6.1 : Relay switching and control modules connectivity – solar-wind renewable energy sources regulated output voltages 179
Table 6.2 : Charging/discharging switching circuits’ connectivity – BATT A STORAGE and BATT B STORAGE 181
LIST OF FIGURES

Figure 2.1	Diagram of hybrid PVT – Wind with BESSs powering DC loads	20
Figure 2.2	Diagram of AC electricity generation system with battery storages powering AC loads	21
Figure 2.3	Diagram of hybrid electricity generation system with BESS powering DC loads and inverter powering AC loads	22
Figure 2.4	Single-Diode model for equivalent single solar cell	23
Figure 2.5	I-V curve characteristics for solar cell	25
Figure 2.6	Typical major wind turbine structure	26
Figure 2.7	Typical asynchronous generator for Danish wind turbine	27
Figure 2.8	Measuring sweep area of wind turbine	29
Figure 2.9	Placement of magnet and sensor to measure RPM	29
Figure 2.10	Circuit schematic of basic charge controller	32
Figure 2.11	Simple charge controller for wind turbine and solar applications	34
Figure 2.12	Energy management review scope	35
Figure 3.1	Block diagram of the modelled real-time DC HRES hardware system	47
Figure 3.2	Block diagram of renewable energy sources centralization for real-time DC HRES hardware system model	50
Figure 3.3	Simulink design of voltage based self-intervention	51
Figure 3.4	Block diagram of input – output connectivity	53
Figure 3.5	Block diagram of voltage switching subsystem controller	55
Figure 3.6	Block diagram of relay switching for voltage output	56
Figure 3.7	Circuit breaker switching and group conditions	60
Figure 3.8	Block diagram of circuit breaker switching and group conditions configuration and setup	62
Figure 3.9	Block diagram circuit breaker switching control setup	65
Figure 3.10	Methodology of BESS charging/discharging switching - Stateflow	68
Figure 3.11	BESS charging/discharging switching algorithm (Stateflow) and circuit breaker switching control	70
Figure 3.12	Simulink block of Breaker Switching	71
Figure 3.13	Simulink model design of DC to DC BC	73
Figure 3.14	Simulink model design of DC to AC inverter	74
Figure 3.15	Solar-wind renewable energy source regulated output voltages – voltage based controller (Stateflow)	75
Figure 3.16	Solar-wind renewable energy sources regulated output voltages	76
Figure 3.17	DC to AC Inverter output voltage	77
Figure 3.18	Charging/Discharging – SoC base controller (Stateflow)	78
Figure 3.19 : BATT A and BATT B STORAGES SoC 78
Figure 3.20 : BATT A and BATT B STORAGES – Current 79
Figure 3.21 : BATT A and BATT B STORAGES – Voltage 79
Figure 3.22 : Charging/Discharging – SoC base controller (Stateflow) 80
Figure 3.23 : BATT A and BATT B STORAGES SoC 80
Figure 3.24 : BATT A and BATT B STORAGES – Current 81
Figure 3.25 : BATT A and BATT B STORAGES – Voltage 81
Figure 3.26 : Charging/Discharging – SoC base controller (Stateflow) 82
Figure 3.27 : BATT A and BATT B STORAGES SoC 82
Figure 3.28 : BATT A and BATT B STORAGES – Current 83
Figure 3.29 : BATT A and BATT B STORAGES – Voltage 83
Figure 3.30 : Solar-wind renewable energy source output voltages – voltage based controller (Stateflow) 84
Figure 3.31 : Solar-wind renewable energy sources regulated output voltages 85
Figure 3.32 : DC to DC Converter input-output voltage 85
Figure 4.1 : DC HRES schematic circuits design (voltage divider and relay switching and control module) 91
Figure 4.2 : DC HRES schematic circuitry design (BESS-GRID connection/LOAD relay switching) 92
Figure 4.3 : Configuration and setup of voltage based self-intervention 93
Figure 4.4 : Voltage proportion equivalency between regulated output voltages from solar-wind renewable energy sources and microcontroller PIC16F877A ADC’s input voltage 96
Figure 4.5 : Voltage proportion equivalency between BESS output voltages and microcontroller PIC16F877A ADC’s input voltage 98
Figure 4.6 : Voltage relay switching and control module 101
Figure 4.7 : DC to DC BC schematic diagram 107
Figure 4.8 : DC to AC inverter schematic diagram 109
Figure 4.9 : Microcontroller PIC16F877A – PORTS RC1 (RLY2) – RC2 (RLY3) 112
Figure 4.10 : Solar-wind renewable energy sources regulated output voltages 113
Figure 4.11 : Logic analyser – HIGH activated signals at PORTS RC1 – RC2 113
Figure 4.12 : Relay switching and control module – PORTS RC1 (RLY2) – RC2 (RLY3) 114
Figure 4.13 : 15 VDC – 240 VAC – Inverter output 115
Figure 4.14 : BESS STORAGES voltage and ADC status 116
Figure 4.15 : Charging/Discharging switching circuit - PORTS RB0 (RLY9) and RE2 (RLY12) 117
Figure 4.16 : Logic analyser – LOW signal at PORTS RB0 and RE2 118
Figure 4.17 : Microcontroller PIC16F877A – PORTS RE0 (RLY10) – RE1 (RLY11) 119
Figure 4.18 : BESS voltage and ADC status 120
Figure 4.19: Logic analyser – HIGH activated signal at PORT RE0 and LOW signal at PORT RE1
Figure 4.20: Charging/Discharging switching circuit - PORTS RE0 (RLY10) and RE1 (RLY11)
Figure 4.21: Microcontroller PIC16F877A – PORTS RB0 (RLY9) – RE2 (RLY12)
Figure 4.22: BESS STORAGES voltage and ADC status
Figure 4.23: Logic analyser – HIGH activated signal at PORT RB0 and LOW signal at PORT RE2
Figure 4.24: Charging/Discharging switching circuit - PORTS RB0 (RLY9) and RE2 (RLY12)
Figure 4.25: Microcontroller PIC16F877A – PORTS RC3 (RLY4) – RC4 (RLY5)
Figure 4.26: Logic analyser – HIGH activated signal at PORTS RC3 – RC4
Figure 4.27: Relay switching and control module – PORTS RC3 (RLY4) – RC4 (RLY5)
Figure 4.28: DC to DC BC output voltage
Figure 4.29: Microcontroller PIC16F877A – PORTS RB0 (RLY9) – RC2 (RLY3) - RD7 (RLY17)
Figure 4.30: Logic analyser – HIGH activated signal at PORTS RB0 (RLY9) – RC2 (RLY3) - RD7 (RLY17)
Figure 4.31: Relay switching and control module – PORT RC2 (RLY3)
Figure 4.32: Charging/Discharging switching circuit - PORT RB0 (RLY9)
Figure 4.33: Grid connection/load switching circuit – PORT RD7 (RLY17)
Figure 4.34: BATT A STORAGE and BATT B STORAGE SoCs and voltages status
Figure 4.35: Microcontroller PIC16F877A – PORTS RC2 (RLY3) – RE0 (RLY10) – RE1 (RLY11)
Figure 4.36: BATT A STORAGE and BATT B STORAGE SoCs and voltages status
Figure 4.37: Logic analyser – HIGH activated signal at PORTS RC0 (RLY3) – RE0 (RLY10) – RE1 (RLY11)
Figure 4.38: Relay switching and control module – PORT RC2 (RLY3)
Figure 4.39: Charging/Discharging switching circuit - PORTS RE0 (RLY10) – RE1 (RLY11)
Figure 4.40: Microcontroller PIC16F877A – PORTS RC2 (RLY3) – RE3 (RLY12)
Figure 4.41: BESS voltages and ADC channels status
Figure 4.42: Charging/discharging switching circuit – PORT RE2 (RLY12)
Figure 4.43: 15 VDC – 240 VAC – Inverter output
Figure 4.44: Microcontroller PIC16F877A – PORTS RC4 (RLY5)
Figure 4.45: Relay switching and control module – PORT RC4
Figure 4.46 : DC to DC BC output voltage
Figure 4.47 : BESS STORAGES voltage and ADC channels status
Figure 4.48 : Relay switching and control module – PORT RD6 (RLY5)
Figure 4.49 : 15 VDC – 240 VAC – Inverter output
Figure 4.50 : Microcontroller PIC16F877A – PORT RD6
Figure 4.51 : Logic analyser – HIGH activated signal at PORT RD6
Figure 4.52 : Charging/Discharging switching circuit - PORT RD6 (RLY16)
Figure 4.53 : 15 VDC – 240 VAC – Inverter output
Figure 4.54 : Microcontroller PIC16F877A – PORT RD5
Figure 4.55 : Logic analyser – HIGH activated signal at PORT RD5
Figure 4.56 : Charging/Discharging switching circuit - PORT RD5 (RLY16)
Figure 4.57 : 15 VDC – 240 VAC – Inverter output
Figure 4.58 : Microcontroller PIC16F877A – PORT RD6
Figure 4.59 : Microcontroller PIC16F877A – PORT RD7
Figure 4.60 : Grid connection/load switching circuit – PORT RD7 (RLY15)
Figure 5.1 : Voltage based self-intervention - embedded software application algorithm
Figure 5.2 : BESS discharging – continuous dynamic decision-making algorithm
Figure 5.3 : BESS charging – continuous dynamic decision-making algorithm
Figure 6.1 : Voltage based self-intervention hardware subsystem
Figure 6.2 : Relay switching and control module – solar-wind renewable energy sources
Figure 6.3 : Charging/discharging switching circuit – BATT A STORAGE and BATT B STORAGE
Figure 6.4 : Relay switching and control modules - charging/discharging switching circuits – integration
Figure 6.5 : GRID connection/LOAD switching circuit
Figure 6.6 : Microcontroller PIC16F877A development board
Figure 6.7 : Overall real-time DC HRES hardware system integration, implementation and construction
Figure 6.8 : LCD reading – WT and PV = 12~15 Volt, BESS STORAGES SoC = 99%
Figure 6.9 : Oscilloscope voltage reading - WT and PV = 12~15 Volt
Figure 6.10 : Oscilloscope voltage reading – BESS = 12.8 Volt
Figure 6.11 : Logic analyser results (Channel 1 = wT – Relay IN2 and Channel 2 = PV – Relay IN3)
Figure 6.12 : Relay switching and control modules – WL-RC1 and SB-RC2
Figure 6.13 : Charging/discharging switching circuits
Figure 6.14 : LCD reading – wT and PV = 12~15 Volt, BATT A
STORAGE SoC = 99% and BATT B STORAGE SoC = 79%

Figure 6.15 : Logic analyser results (Channel 1 = wT – Relay IN2, Channel 2 = PV – Relay IN3 and Channel 9 = BATT B STORAGE – Relay IN2)

Figure 6.16 : Charging/discharging switching circuit – B2C-RE0 (Relay IN2)

Figure 6.17 : Oscilloscope voltage reading - WT = 12~15 Volt and BATT B STORAGE = 15.3 Volt

Figure 6.18 : LCD reading – wT and PV = 12~15 Volt, BATT A STORAGE SoC = 72% and BATT B STORAGE SoC = 93%

Figure 6.19 : Logic analyser results (Channel 1 = wT – Relay IN2, Channel 2 = PV – Relay IN3 and Channel 8 = BATT A STORAGE – Relay IN1)

Figure 6.20 : Charging/discharging switching circuits – B1C-RB0 (Relay IN1)

Figure 6.21 : LCD reading – WT = 7~12 Volt and pV = 12~15 Volt, BATT A STORAGE SoC = 74% and BATT B STORAGE SoC = 89%

Figure 6.22 : Oscilloscope voltage reading - PV = 12~15 Volt and WT = 7~12 Volt

Figure 6.23 : Oscilloscope voltage reading - WT = 7~12 Volt and BATT STORAGE BC = 15.5 Volt

Figure 6.24 : Relay switching and control module – SL-RC3 and WB7-RC4

Figure 6.25 : Logic analyser results (Channel 3 = pV – Relay IN4, Channel 4 = WT – Relay IN4 and Channel 12 = BATT A STORAGE – Relay IN5)

Figure 6.26 : Charging/discharging switching circuit – B1C7-RB1 (Relay IN5)

Figure 6.27 : LCD reading – WT = 0~7 Volt and PV = 12~15 Volt, BATT A STORAGE SoC and BATT B STORAGE SoC = 37%

Figure 6.28 : Logic analyser results (Channel 2 = pV – Relay IN3 and Channel 8 = BATT A STORAGE – Relay IN1)

Figure 6.29 : Relay switching and control module – SB-RC2

Figure 6.30 : Charging/discharging switching circuit – B1C-RB0 (Relay IN1)

Figure 6.31 : Oscilloscope voltage reading – wt=6.84 Volt and pV = 12~15 Volt

Figure 6.32 : Oscilloscope voltage reading – BATT A STORAGE = 14 Volt

Figure 6.33 : GRID connection/LOAD switching circuit – GRID-RD7 (Relay IN1)

Figure 6.34 : LCD reading – BATT A STORAGE SoC = 75% and BATT B STORAGE SoC = 45%

Figure 6.35 : Logic analyser results (Channel 2 = pV – Relay IN3,
Channel 9 = BATT B STORAGE – Relay IN2 and Channel 10 = BATT A STORAGE – Relay IN3)

Figure 6.36 : Charging/discharging switching circuit – B2C-RE0 (Relay IN2) and B1DC-RE1 (Relay IN3)

Figure 6.37 : Oscilloscope voltage reading – BATT A STORAGE = 12 Volt and BATT B STORAGE = 12.9 Volt

Figure 6.38 : LCD reading – BATT A and BATT B STORAGES SoC = 99%

Figure 6.39 : Logic analyser results (Channel 2 = pV – Relay IN3, Channel 11 = BATT B STORAGE – Relay IN4)

Figure 6.40 : Charging/discharging switching circuit – B2DC-RE2 (Relay IN4)

Figure 6.41 : Oscilloscope voltage reading – BATT B STORAGE = 11.9 Volt

Figure 6.42 : LCD reading – wT = 7~12 Volt and pv = 0~7 Volt

Figure 6.43 : Oscilloscope voltage reading – DC to DC BC output voltage = 13.9 Volt and Wind regulated output voltage (wT) = 11 Volt

Figure 6.44 : Oscilloscope voltage reading – BATT A STORAGE = 13 Volt and DC to DC BC output voltage = 13.9 Volt

Figure 6.45 : LCD reading – wt and pv = 0~7 Volt, BATT A and BATT B STORAGES SoC = 99%

Figure 6.46 : Logic analyser result (Channel 15 = BATT B STORAGE – Relay IN8)

Figure 6.47 : Charging/discharging switching circuit – B2DC7-RD6 (Relay IN8)

Figure 6.48 : LCD reading – wt and pv = 0~7 Volt, BATT A STORAGE SoC = 99% and BATT B STORAGE SoC = 79%

Figure 6.49 : Logic analyser result (Channel 14 = BATT A STORAGE – Relay IN7)

Figure 6.50 : Charging/discharging switching circuit – B1DC7-RD5 (Relay IN7)

Figure 6.51 : LCD reading – wt and pv = 0~7 Volt, BATT A STORAGE SoC = 57% and BATT B STORAGE SoC = 77%

Figure 6.52 : LCD reading – wt and pv = 0~7 Volt, BATT A and BATT B STORAGES SoC ≤ 40%

Figure 6.53 : Grid connection/load switching circuit – GRID-RD7 (Relay IN1)
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ADC</td>
<td>Analogue to Digital Conversion</td>
</tr>
<tr>
<td>ASEAN</td>
<td>The Association of Southeast Asian Nation</td>
</tr>
<tr>
<td>BATT</td>
<td>Battery</td>
</tr>
<tr>
<td>BC</td>
<td>Boost Converter</td>
</tr>
<tr>
<td>BESS</td>
<td>Battery Energy Storage System</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CSP</td>
<td>Concentrating Solar Power</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DE</td>
<td>Differential Evolution</td>
</tr>
<tr>
<td>DisCh</td>
<td>Discharging</td>
</tr>
<tr>
<td>DL</td>
<td>Dump Load</td>
</tr>
<tr>
<td>FC</td>
<td>Fuel Cells</td>
</tr>
<tr>
<td>FF</td>
<td>Fill Factor</td>
</tr>
<tr>
<td>FL</td>
<td>Fuzzy Logic</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>HCC</td>
<td>Hybrid Charge Controller</td>
</tr>
<tr>
<td>HOMER</td>
<td>Hybrid Optimization of Multiple Energy Resources</td>
</tr>
<tr>
<td>HRES</td>
<td>Hybrid Renewable Energy System</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>HEP</td>
<td>Hydroelectric Power</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diodes</td>
</tr>
<tr>
<td>MCLR</td>
<td>Master Clear Unit</td>
</tr>
<tr>
<td>MGT</td>
<td>Micro Gas Turbine</td>
</tr>
<tr>
<td>MPPT</td>
<td>Maximum Power Point Tracker</td>
</tr>
<tr>
<td>NC</td>
<td>Normally Closed</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>NO</td>
<td>Normally Open</td>
</tr>
<tr>
<td>OWC</td>
<td>Oscillating Water Column</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PEMFC</td>
<td>Proton Exchange Membrane Fuel Cell</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimisation</td>
</tr>
<tr>
<td>PV</td>
<td>Solar Photovoltaic</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>RESs</td>
<td>Renewable Energy Sources</td>
</tr>
<tr>
<td>RETs</td>
<td>Renewable Energy Technologies</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SoC</td>
<td>State of Charge</td>
</tr>
<tr>
<td>SVP</td>
<td>Solar Ventilation Preheating</td>
</tr>
<tr>
<td>TSR</td>
<td>Tip Speed Ratio</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>VRs</td>
<td>Variable Resistors</td>
</tr>
<tr>
<td>VSM</td>
<td>Virtual System Modelling</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>WT</td>
<td>Wind Turbine</td>
</tr>
</tbody>
</table>
DECLARATION

This work was produced by the author unless otherwise stated and duly acknowledged.

Signed:

Date:
CHAPTER 1

INTRODUCTION

Renewable energy sources have been available since many years ago. Renewable energy sources usually come from the natural sources such as sunlight, wind, rain water, tides, waves, geothermal heat and much more. These renewable energy sources can be used as replenishment to the depleting fossil fuels for electricity generation. The concern of depleting fossil fuels has encouraged the industries to explore or to increase the electricity productivity using the available renewable energy sources. Also, recent concerns on the concentrations of greenhouse gasses because of fossil fuels combustion have also encouraged the industries to look into new alternative sources for electricity generation. Alternative sources such as solar and wind power have been looked as notable renewable energy sources to support the diminishing conventional fossil fuels for electricity generation. Over the past 10 years, solar and wind power energies made a significant rise. Ever since solar and wind power is seen able to promisingly take over on the fossil fuels for electricity generation, many countries and local governments invested a lot of money into renewable energy electricity generation and distribution systems.

As the solar and wind power systems are growing into large-scale, the energy researchers, scientists and practitioners are looking into continuity research to improve the overall system performances, operation and reducing the financial risks. First, renewable energy sources such as solar and wind is always dependent on the geographical area, periodic climate change and greater energy production probability may disperse from the load locations. Neither solar nor wind power systems have the capability to fully satisfy the load demand and consumption due to the geographical area and periodic climate changes. Hence, solar and wind energies are combined to complement each another as hybrid power system to increase the electricity power generation, production and reduce the greenhouse gas emission impact on the environment. With the development of complementary hybrid power system, the power intermittency issue which greatly reflects on the climate condition can be probably resolved or improved. Theoretically, solar and wind complementary hybrid power systems have got more...
advantages compare to any other single renewable energy source power system. Solar Wind Energy Tower article [1] mentioned about the latest development of solar and wind complementary hybrid power system, which is also known as Hybrid Renewable Energy System (HRES). This development has emphasised on the optimisation of the hybrid system design for reliable economy costing. In its comparison the designed and developed complementary or hybrid solar - wind power system have shown a significant reduction in the installation area and costing while increasing the lifetime of the overall system performances [2]. This indicates that the deployment of renewable energy sources as complementary or hybrid power system could economically increase many involved parameters for a better performance [3]. Looking at the design and development in [1], this research hypothesised that complementary or hybrid renewable energy sources presents the cost-effective electricity power generation scheme to accommodate the increasing power supply demand and optimised the system operation.

This research work is divided into three stages; 1) modelling and simulating the concept of solar-wind renewable energy sources using the self-intervention method to supervise, coordinate, manage and control the available sources for an optimal system operation and integrating charging and discharging process for the Battery Energy Storage System (BESS) using MATLAB Simulink/Stateflow Software. 2) Designing, developing and simulating electronic circuits for solar-wind renewable energy sources and BESS to perform the self intervention method for optimal system controllability and operation, incorporating microcontroller PIC16F877A to supervise, coordinate, manage and control the BESS charging and discharging process using PROTEUS Software. 3) Development, implementation, integration and construction of solar-wind renewable energy sources and BESS as a complete hardware system for real-time testing.

This research work is conducted in three stages are to fundamentally study the concept of supervising, coordinating, managing and controlling the solar-wind renewable energy sources and BESS for optimal operation with least dependency on the power source supply from the grid network. Each stage is presented with system performance analysis results, obtained results in stage one and two are categorised as preliminary results to validate the self intervention of solar-wind renewable energy sources and BESS for charging or discharging process. The obtained preliminary results in stage one demonstrated the supervision,
coordinating, managing and controlling of solar-wind renewable energy sources and BESS charging or discharging using the MATLAB Simulink/Stateflow software.

Once the obtained preliminary results in stage one are studied and analysed, then the research is proceed to second stage. In the second stage, the electronic circuits PROTEUS software is used to design, develop and simulate the modelled system in stage one. All the modelled subsystems in stage one are designed, developed and simulated based on the real-time condition. The PROTEUS software is used to design and develop the electronics circuit and integrate the electronic circuits with microcontroller PIC16F877A to perform supervision, coordinating, managing and controlling the solar-wind renewable energy sources and BESS charging or discharging process. Prior to that, the embedded software application is designed and developed for microcontroller PIC16F877A. The embedded software application is important to be incorporated into microcontroller PIC16F877A to perform mathematical calculation on the available voltages to allow the microcontroller PIC16F877A intelligently supervise, coordinate, manage and control the solar-wind renewable energy sources and BESS charging or discharging process. This also will assist the system to optimise the solar-wind renewable energy sources and BESS utilisation for the connected Alternating Current (AC) load with least dependency on the grid network. The obtained results during the system simulation using the electronic circuits PROTEUS software is compared, analysed and validated with the obtained preliminary results in stage one. After these results are satisfied, then the hardware development, implementation, integration and construction is carried out. For a good hardware performance, it is necessary to realize a good preliminary work, clear feasible study which will be an indication for optimal technical solution for hardware development, implementation, integration and construction.

1.1 POWER ELECTRONICS ADVANCEMENT

Among the DC HRES, solar and wind energies are utilised broadly due to the extensive research in the system and technology development. Power electronics engineering research field have impacted in smoothing the overall performances of DC HRES for a continuous reliability of power generation, overall system operational optimisation and energy delivery/transfer between available sources/loads. Although many large HRES have been and are still under construction all around the globe, small scale HRES have seen increasing in
numbers and getting more focus in the recent years. Small scale HRES such as DC based are getting attention due to their lower impact on the landscape, avoid synchronisation process such as in AC based system, their ability to operate separately from the grid (islanded) and also able to operate with the grid network (non-islanded). In general, there is huge potential of usage for small scale DC HRES with strategic supervision, coordination, management and control of the available power from renewable energy sources and BESS for optimum power delivery, each subsystem to operate together and efficient self intervention performance between renewable energy sources and switching between BESS for charging or discharging process. All of these advantages are not possible with all the advancements in the power electronics engineering field.

1.2 MOTIVATIONS

Solar and wind energies are being utilized broadly as source to electricity generation due to the advance development in the renewable energy sector and technology, their freely available energy characteristics at no extra cost, independency from fossil fuels and cost reduction in the individual system development have gained interest from many sectors. The work to develop indigenous Direct Current (DC) HRES using solar and wind to harvest the available energies from the sun and wind to generate electricity requires proper technologies integration. Even though the solar and wind DC HRES have improved significantly in terms of design and development, there are still challenges involved in many subareas of the HRES. One of the challenges or constraints exist in the HRES are the power management control strategy, to harness the DC energies as maximum as possible to optimise the freely available power source as primary supply for the connected AC load. Therefore, a strategic power supervision, coordination, management and control from the input sources to the connected load and BESS for charging or discharging are necessary. In addition, these challenges and constraints need to be address due to HRES dependency on the weather that would cause the intermittency of power delivery and operation optimisation. The increase research and advancement in power electronics engineering have provided the flexibility to address the challenges and constraints of smoothing the power delivery via an effective supervision, coordination, management and control at the DC HRES.
1.3 PROBLEM STATEMENT

At this point, the integration of solar and wind renewable energy sources as a system is gaining popularity due to their limitation to perform satisfactorily as an individual source. Due to the intermittent climate nature, individual solar or wind energy power systems are unable to perform and satisfactorily meet the load demand. Hence, integrating solar and wind renewable energy sources can improve the system complementary operation for maximum power delivery. With additional of some sources and sinks, counter balance the system intermittency could be achieved. The rapid development in the renewable energy and power electronics technology, reduced costing of the energy storages and broad microgrid system applications, various different system control strategies for optimum operation of power delivery and management has managed to achieved an effective energy distribution from the sources to the load of a HRES [4].

The concept of having two renewable energy sources is no longer new and have gained popularity in recent years such as been discussed in [5 - 10]. HRES is aimed to increase the system power delivery efficiency, optimise system operation and increase the power utilisation mainly from HRES. In general, HRES have huge potential for utilising the renewable energy sources to maximize the electricity power generation and distribution for increasing electricity demand around the globe. However, HRES encounter several technical challenges which are mainly associated to the intermittent climate and nature of the renewable energy sources. Thus, the technical challenges associated with HRES require an extensive research in several areas. The areas that have been identified are:

Proper sources self-intervention to achieve system operational optimisation for power management strategy and utilisation – It is to ensure that the power produced by solar-wind renewable energy sources can be optimised as much as possible without switching to the grid network. Also, to assist the HRES to operate at minimum production level but still would be able to perform at optimum performance when intermittent nature condition occurs.

Proper supervision, coordination, management and control of each subsystem that is connected via the control system – The HRES requires a proper supervision, coordination, management and control among each of the subsystem during a complete system operational. Therefore, the control system has to supervise, coordinate, manage and control different task