STRUCTURED GROWTH OF ZINC OXIDE NANORODS
ON PLASTIC OPTICAL FIBER AND LIGHT SIDE
COUPLING TOWARDS SENSING APPLICATIONS

HAZLI RAFIS BIN ABDUL RAHIM

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA
KUALA LUMPUR

2017
STRUCTURED GROWTH OF ZINC OXIDE NANORODS ON PLASTIC OPTICAL FIBER AND LIGHT SIDE COUPLING TOWARDS SENSING APPLICATIONS

HAZLI RAFIS BIN ABDUL RAHIM

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA
KUALA LUMPUR

2017
UNIVERSITY OF MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Hazli Rafis Bin Abdul Rahim (I.C No.: 811110-02-5401)
Registration/Matric No: KHA140007
Name of Degree: Doctor of Philosophy
Title of Thesis: Structured Growth of Zinc Oxide Nanorods on Plastic Optical Fiber and Light Side Coupling Towards Sensing Applications
Field of Study: Electronic (Engineering and Engineering Trades)

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:
Designation:
ABSTRACT

A simple and cost effective optical fiber sensor using side coupling of light into the core modes of plastic optical fiber (POF) coated with zinc oxide (ZnO) nanorods is reported here. Nanorods coating enhanced coupling inside the fiber by scattering light but were also capable of causing leakage. Structuring the growth to specific regions allowed scattering from different segments along the fiber to contribute to the total coupled power. A uniform, densed and highly aligned spiral patterned ZnO nanorods were grown on the POF using the hydrothermal method and its effect was investigated. ZnO nanorods growth time of 12 h and temperature of 90 °C provided the best coupling voltage. Side coupling was measured to be a factor of 2.2 times better for spiral patterned coatings as opposed to unpatterned coatings. The formation of multiple segments was used for multiple-wavelength channels excitation where different bands were side coupled from different segments. It was found that visible white light source significantly coupled the light into the POF compared with infrared laser sources. A first order theoretical model was derived to simulate the impact of millimeter (mm) scale spiral patterns on coupling efficiency by varying the width and spacing of the coated and uncoated regions. The width of spiral patterned ZnO nanorod coatings on POF was optimized theoretically for light side coupling and was found to be 5 mm. An experimental validation was performed to complete the optimization and the experimental results showing a well correlation with simulation. Optimized width of spiral patterned ZnO nanorods grown on large core POFs was used for the purpose of temperature and multiple optical channel alcohol vapor sensing. Spiral patterned ZnO nanorods coating exhibited a significant response to temperature change from 20 °C to 100 °C based on extinction concept which is the attenuation of light by scattering and absorption as it traverses the ZnO nanorods. Sensitivity was measured to be a factor of 1.3 times better for spiral patterned coatings as opposed to unpatterned coating. The multiple optical channel alcohol sensing mechanism
utilized changes in the output signal due to adsorption of methanol, ethanol and isopropanol vapors. Three spectral bands consisting of red (620-750 nm), green (495-570 nm) and blue (450-495 nm) were applied in measurements. The range of relative intensity modulation (RIM) was determined to be between 25 to 300 ppm. Methanol presented the strongest response compared to ethanol and isopropanol in all three spectral channels. With regard to alcohol detection RIM by spectral band, the green channel demonstrated the highest RIM values followed by the blue and red channels respectively.
ABSTRAK

Satu penderia optik yang mudah dan kos efektif menggunakan gandingan sisi cahaya ke dalam ragam-ragam teras gentian optik plastik (POF) disalut dengan zink oksida (ZnO) nanorods dilaporkan di sini. Salutan nanorod-nanorod mempertingkatkan gandingan dalam gentian oleh serakan cahaya tetapi juga boleh menyebabkan kebocoran. Penstrukturkan pertumbuhan ke kawasan-kawasan tertentu membolehkan penyerakan daripada ruas yang berbeza di sepanjang gentian yang menyumbang kepada jumlah kuasa terganding. Satu pilin corak ZnO nanorod yang seragam, tumpat dan terjajar dengan tinggi dan yang ditumbuhkan di atas teras POF menggunakan kaedah hidroterma dan kesannya disiasat. ZnO nanorod yang mempunyai masa pertumbuhan 12 jam dan suhu 90 °C telah menyediakan gandingan voltan terbaik. Gandingan sisi diukur dengan faktor sebanyak 2.2 kali lebih baik untuk lapisan pilin corak berbanding dengan lapisan tidak tercorak. Pembentukan berbilang ruas telah juga digunakan untuk penguajaan saluran-saluran pelbagai panjang gelombang di mana jalur-jalur digandingkan secara sisi daripada ruas yang berbeza. Didapati sumber cahaya putih boleh nampak dengan ketara menggandingkan cahaya ke dalam POF berbanding dengan sumber laser infra-merah. Satu model teori tertib pertama diterbitkan untuk menyelakakan kesan corak-corak pilin berskala milimeter (mm) terhadap kecekapan gandingan dengan mengubah lebar dan jarak kawasan bersalut dan tidak bersalut. Lebar lapisan corak pilin ZnO nanorod pada POF teras telah dioptimumkan secara teori untuk gandingan sebelah cahaya dan didapati 5 mm adalah lebar tersebut. Satu pengesahan ujikaji telah dilakukan untuk melengkapkan pengoptimuman dan keputusan ujikaji menunjukkan satu hubungan sekaitan yang baik dengan penyelakuan. Lebar corak pilin ZnO nanorod yang ditumbuhkan atas POF teras besar telah digunakan untuk penderiaan suhu dan wap alkohol pelbagai saluran optik. Laporan pilin corak ZnO nanorod mempamerkan satu tindak balas yang ketara kepada perubahan suhu dari 20 °C hingga 100 °C berdasarkan konsep pemupusan yang
merupakan pengecilan cahaya oleh serakan dan penyerapan apabila ia merentasi ZnO nanorod. Kepekaan diukur yang menunjukan faktor 1.3 kali lebih baik untuk lapiran corak pilin yang bertentangan dengan lapiran tidak bercorak. Mekanisme penderiaan wap alkohol pelbagai saluran optik telah menggunakan perubahan-perubahan di dalam isyarat keluaran disebakan oleh penyerapan wap-wap methanol, etanol dan isopropil. Tiga jalur spektrum terdiri daripada merah (620-750 nm), hijau (495-570 nm) dan biru (450-495 nm) telah digunakan dalam pengukuran ini. Julat nisbi pemodulatan keamanat ditentukan antara 25 hingga 300 ppm. Metanol menunjukkan tindakbals yang kuat berbanding etanol dan isopropil dalam ketiga-tiga saluran spektrum. Dengan mengambil kira nisbi pemodulatan keamanat pengesan alkohol oleh jalur spektrum, saluran hijau menunjukkan nilai nisbi pemodulatan keamanat tertinggi diikuti dengan masing-masing oleh saluran biru dan merah.
ACKNOWLEDGEMENTS

It is with immense gratitude that I would like to acknowledge the support and help of my supervisor, Prof. Dr. Sulaiman Wadi Bin Harun. He has been a source of inspiration and has convincingly conveyed a spirit of adventure in regard to research. The initial ideas he suggested and his vast knowledge on optical sensor were invaluable in helping me get set on the right track. The successful completion of my task would not have been possible without his constant encouragement and guidance throughout the whole period of my research work.

I am also indebted to my co-supervisor Prof. Dr. Waleed S. Mohammed who helped me in building up a positive work attitude. His mastery over the subject and the freedom he provided in carrying out my research were instrumental in gaining a lot of confidence. I owe my deepest gratitude to Prof. Dr. Louis Gabor Hornyak, Director of Center of Excellence in Nanotechnology, Asian Institute of Technology (AIT), Bangkok, Thailand and Prof. Dr. Joydeep Dutta, Chair of Functional Materials division, KTH Royal Institute of Technology, Stockholm, Sweden for reading my reports, commenting on my views and helping me understand and enrich my ideas.

I share the credit of my work with Mr. Manjunath, PhD student, Bangkok University, Thailand and Siddhath Thokchom, master student, Assam Don Bosco University, India for their constant involvement and inspiring advice.

Most importantly, I would like to express my heart-felt gratitude to my parents Abdul Rahim and Hasnah, thank you for your encouragement and prayers. My deepest appreciations from bottom of my heart go to my wife Siti Khatijah for all your love and support, and to our children Rayyan and Rayqal for being such as wonderful sons.

Lastly, I would like to thank Universiti Teknikal Malaysia Melaka (UTeM) and Ministry of Higher Education Malaysia (MOHE) for sponsoring my PhD program under SLAB/ SLAI scholarship.
TABLE OF CONTENTS

Abstract .. iii
Abstrak .. v
Acknowledgements ... vii
Table of Contents ... viii
List of Figures ... xii
List of Tables.. xviii
List of Symbols and Abbreviations .. xix
List of Appendices .. xxii

CHAPTER 1: INTRODUCTION .. 1
1.1 General... 1
1.2 The Role of Nanotechnology in Optical Sensor .. 2
1.3 Problem Statement... 4
1.4 Hypothesis ... 5
1.5 Objectives of the Study.. 6
1.6 Limitation of the Study .. 6
1.7 Organization of the Thesis... 7

CHAPTER 2: LITERATURE REVIEW .. 9
2.1 Introduction.. 9
2.2 Optical Fiber .. 10
2.3 Plastic Optical Fiber (POF) ... 13
 2.3.1 Optical Properties of POF .. 14
 2.3.2 Mechanical Properties of POF.. 15
 2.3.3 Thermal Properties of POF ... 17
CHAPTER 4: CHARACTERIZATION OF LIGHT SIDE COUPLING TOWARDS MULTIPLE OPTICAL CHANNEL AND OPTIMIZATION OF SPIRAL PATTERNED WIDTH OF ZINC OXIDE NANOROD COATING FOR OPTIMAL SIDE COUPLING ... 78

4.1 Introduction ... 78
4.2 Mechanism of Light Scattering by ZnO Nanorod ... 80
4.3 Mechanism of Light Scattering For Unpatterned and Spiral Patterned ZnO Nanorod Layers and For the Multi-Channel Optical Fiber ... 81
4.4 Experimental Characterization of Multi-Channel Optical Fiber towards Light Side Coupling .. 84
4.5 Modeling of Coupling Efficiency for Spiral Patterned and Unpatterned Coating by Varying the Width of the Coated Region towards Light Side Coupling 86
4.6 Theoretical Optimization of Spiral Patterned Width for Optimal Side Coupling ... 93
4.7 Experimental Optimization of Spiral Patterned Width for Optimal Side Coupling .. 99
4.8 Summary .. 102

CHAPTER 5: APPLIED LIGHT SIDE COUPLING WITH OPTIMIZED SPIRAL PATTERNED ZINC OXIDE NANOROD COATINGS FOR TEMPERATURE AND MULTIPLE OPTICAL CHANNEL ALCOHOL VAPOR SENSING 104

5.1 Introduction ... 104
5.2 SEM images of Optimized Spiral Patterned Zinc Oxide Nanorod Coatings for Sensing Applications ... 105
5.3 Applied Light Side Coupling With Optimized Spiral Patterned Zinc Oxide Nanorod Coatings for Temperature Sensing ... 107
5.3.1 Experiment of Temperature Sensing .. 109
5.3.2 Results and Discussions .. 110
5.4 Applied Light Side Coupling With Optimized Spiral Patterned Zinc Oxide Nanorod Coatings for Multiple Optical Channel Alcohol Vapor Sensing 113
 5.4.1 Experiment of Multiple Optical Channel for Alcohol Vapor Sensing ... 114
 5.4.2 Results and Discussions ... 117

5.5 Summary .. 125

CHAPTER 6: CONCLUSION AND FUTURE WORK .. 127

6.1 Conclusion ... 127

6.2 Future work ... 129

References .. 130

List of Publications, Papers Presented And patents .. 147

Appendix ... 151
LIST OF FIGURES

Figure 2.1 Some applications of optical fiber sensors in industry (Rajan, 2015) 10
Figure 2.2 The parts of optical fiber .. 11
Figure 2.3 Phenomena of light refraction and reflection inside optical fiber. 12
Figure 2.4 (a) Multimode and (b) single mode ... 13
Figure 2.5 Attenuation loss of common POF as a function of wavelength (Zubia & Arrue, 2001) ... 15
Figure 2.6 The measurement of true stress versus strain for single-mode PMMA-doped core (Kiesel et al., 2007) ... 16
Figure 2.7 The results of Dynamic Young’s modulus for PMMA MPOF, step index POF and silica SMF28 (Stefani, Andresen, Yuan, & Bang, 2012) 17
Figure 2.8 The responses of two POF FBG sensors with RH varied from 80% to 70% at a temperature of 25°C (W. Zhang, Webb, & Peng, 2012) ... 19
Figure 2.9 Schematic of POF-based accelerometer. The inset shows a magnification of the fiber gap region. (Antunes et al., 2013) ... 21
Figure 2.10 (a) Schematic of VCO interrogator used for time-of-flight measurements and (b) Image of upper side of aircraft flap with POF adhered to surface and prototype instrumentation. (Gomez et al., 2009) ... 23
Figure 2.11 Wurtzite structure of ZnO ... 26
Figure 2.12 3D ZnO structures (a) nanorods (Dedova et al., 2007), (b) nanowires (Shan et al., 2008), (c) nanoflowers (Miles et al., 2015) and (d) snowflakes (Jing et al., 2012). ... 28
Figure 2.13 Growth morphologies of ZnO 1D nanostructures. (Z. L. Wang, 2004) 29
Figure 2.14 SEM images of ZnO nanostructures grown with different aqueous solutions of pH value of (a) 1.8, (b) 4.6, (c) 6.6, (d) 9.1, (e) 10.8 and (f) 11.2. (Amin et al., 2011) .. 30
Figure 2.15 SEM images of ZnO nanorods on Si substrate with different precursor concentrations of the growth aqueous solution (a) at 25 mM, (b) 50 mM, (c) 100 mM, (d) 300 mM. (Amin et al., 2011) .. 31
Figure 2.16 SEM image of ZnO nanorods grown using Zn(NO₃)₂ and HMT (Baruah & Dutta, 2008) ... 34
Figure 2.17 Various applications of ZnO (Kołodziejczak-Radzimska & Jesionowski, 2014) .. 35

Figure 2.18 Illustration of light scattering from one ZnO nanorod................................. 38

Figure 2.19 Schematic representation of two possible configurations of side coupling to
cladding modes with guided and leakage intensity responses of light paths in the side
coupling configuration (H Fallah et al., 2013).. 39

Figure 2.20 Optical characterization setup for the light side coupling (Hoorieh Fallah et
al., 2014)... 41

Figure 2.21 The coupling intensity of different concentration of zinc acetate for ZnO
nanorods grown on wet etched optical fiber (H Fallah et al., 2013)... 42

Figure 2.22 The measurement of coupling intensity (y- left axis), the average scattering
coefficient (y- right axis) and versus the concentration of zinc acetate (H Fallah et al.,
2013) .. 43

Figure 2.23 The coupling intensity for cladding mode and core mode at different
excitation location on the optical fiber (Hoorieh Fallah et al., 2014) .. 44

Figure 2.24 Optical nephelometer setup for testing scattering properties of ZnO grown on
glass substrate (Hoorieh Fallah et al., 2014) ... 45

Figure 2.25 The measurement of (a) normalized angular power spectra and (b) density,
respect to the concentrations of zinc acetate used for preparing the ZnO seed layer on
glass substrate (Bora et al., 2014) ... 46

Figure 2.26 The setup of liquid temperature sensor. (S. Kumar & Swaminathan, 2016)
... 47

Figure 2.27 Optical fiber sensor based on SPR for chemical sensing. (Michel et al., 2016)
... 49

Figure 3.1 Optimization parameters for the ZnO nanorods growth on POF using
hydrothermal method ... 51

Figure 3.2 General procedures of ZnO nanorods synthesis using hydrothermal............ 52

Figure 3.3 The process of fiber preparation (a) POF with black jacket (b) POF is exposed
with length of 10 cm for ZnO coating (c) 3M water proof tape is used to create spiral
template (d) manually creating spiral pattern on POF and (e) POF with spiral template
before the synthesis process. .. 53

Figure 3.4 Procedures of seeding process on POF... 54
Figure 3.5 Process of 1mM ZnO nanoparticle solution preparation .. 55
Figure 3.6 Preparation of the pH controlled solution using NaOH 55
Figure 3.7 Alkaline process of ZnO nanoparticles solution by NaOH 56
Figure 3.8 (a) Tween 80 preparation and (b) POF surface treatment 57
Figure 3.9 Dip and Dry method in seeding process ... 57
Figure 3.10 Drop and Dry method in seeding process ... 58
Figure 3.11 Slow stirring method in seeding process ... 59
Figure 3.12 The process of ZnO nanorod growth on POFs ... 60
Figure 3.13 Flow of the optimization process of ZnO nanorod growth on POF through hydrothermal ... 61
Figure 3.14 Low magnification SEM images of the POF coated with ZnO nanorods with (a) surface treatment (Tween 80) and (b) without surface treatment 62
Figure 3.15 \(V_{pp} \) characterisation setup to measure the side coupling of ZnO nanorods for unpatterned and spiral patterned POFs ... 62
Figure 3.16 The modulated LED red light source used in the optical characterization 63
Figure 3.17 The exposed regions on the unpatterned type of POF (a) interface, (b) middle and (c) tip ... 64
Figure 3.18 Average \(V_{pp} \) for 15 and 20 hours growth time with backscattering effects 65
Figure 3.19 ZnO nanorods grown on POF (a) 15 hours (b) 20 hours 65
Figure 3.20 Backscattering effect is eliminated at interface regions after reducing the growth time to 8, 10, and 12 hours ... 66
Figure 3.21 Average \(V_{pp} \) at interfacial area for all growth times 67
Figure 3.22 The SEM images for growth durations: 8 hours (top left), 10 hours (top right) and 12 hours (bottom) ... 68
Figure 3.23 The specified regions on the spiral patterned POF for optical characterization 69
Figure 3.24 Average Vpp for the spiral patterned growth for 12 h which has more than one interface and ZnO regions. The inset shows the regions covered by the aperture when characterisation the structured and unstructured ZnO growth on POF .. 70
Figure 3.25 (a) 13 kX SEM image of ZnO spiral patterned growth after synthesis (b) 25.0 kX SEM image of the nanorods and Inset: The ZnO nanorods at 60.0 kx magnification for 12 hours ...71

Figure 3.26 EDX spectrum of ZnO nanorods showing zinc and oxygen peaks72

Figure 3.27 The growth of ZnO nanorods using the drop and dry method (a) 5 kX SEM image of spiral patterned growth on POF and (b) the morphology of ZnO nanorods at a high magnification ...73

Figure 3.28 Schematic diagram showing the possible agglomeration of ZnO nanoparticles upon evaporation of the solvent (a) thin layer of ZnO nanoparticles (b) agglomerated clumps of ZnO nanoparticles with various orientations and (c) ZnO nanorods grow from the seed crystallites in the different directions ..74

Figure 3.29 The continuous slow stirring process ...75

Figure 3.30 The growth of ZnO nanorods using the continuous slow stirring method (a) 5 kX SEM image of spiral patterned growth on POF and (b) the morphology of ZnO nanorods at 10.0 kX ...76

Figure 4.1 Mechanism of light scatters into POF by ZnO nanorods at angle larger than critical angle, θ_c ...80

Figure 4.2 Schematic diagram of light scattering for (a) Unpatterned growth of ZnO nanorods with the coupling light (b) Spiral patterned growth of ZnO nanorods with more interface and ZnO regions with the coupling light (c) Spiral patterned growth of ZnO nanorods for a multi-channel excitation ..82

Figure 4.3 Spectral analysis setup to determine wavelength coupling maxima84

Figure 4.4 Transmittance of the visible white light spectrum85

Figure 4.5 Spectrum for near infrared (850 and 980 nm) for spiral patterned and unpatterned growth ..86

Figure 4.6 (a) Spirally patterned coating of ZnO nanorods on POF and (b) unpatterned coating of ZnO nanorods on POF with a visible light source ..87

Figure 4.7 Definition of polar coordinate ..88

Figure 4.8 (a) Dividing the POF coated with ZnO nanorods into discrete sections of width Δz for both coating schemes (b) Optical Intensity components around a segment h of the ZnO coated POF ..90

Figure 4.9 The scheme of light propagation for unpatterned continuous and spiral patterned coating where ZnO coating region was fixed to 3 segments (3 mm)92
Figure 4.10 The normalized coupling output for unpatterned and spiral patterned coating by varying the width of ZnO nanorod coating on POFs ... 94

Figure 4.11 (a) Spirally patterned coating of ZnO nanorods on POF and (b) unpatterned coating of ZnO nanorods on POF with a laser light source (Gaussian beam) 96

Figure 4.12 The coupling efficiencies for spiral patterned and unpatterned coating excited by a laser light source ... 97

Figure 4.13 Spiral patterned coating of ZnO nanorods (b) unpatterned coating of ZnO nanorods with varied uncoated spacing ... 98

Figure 4.14 The effects on coupling efficiency by varying the uncoated region 99

Figure 4.15 Coating schemes (a) unpatterned POFs (b) Spiral patterned POFs 100

Figure 4.16 Optimization setup to measure the output voltage for unpatterned and spiral patterned ZnO nanorods ... 101

Figure 4.17 The experimental result of spiral patterned and unpatterned coating for 3, 5, 7 and 100 mm .. 102

Figure 5.1 (a) The optimized spiral patterned ZnO nanorod coatings, (b) the perpendicular growth of ZnO nanorods on POF at low magnification (c) at high magnification (d) height and diameter of the ZnO nanorod and (e) ZnO continuous coating on unpatterned POF .. 106

Figure 5.2 Experimental setup for the proposed temperature sensor towards light side coupling .. 110

Figure 5.3 The response of spiral patterned coating and unpatterned coating in temperature sensing .. 111

Figure 5.4 The temperature sensing mechanism (a) before light illumination (b) upon light illumination and (c) aluminum rod in close proximity to ZnO nanorods coating layer. .. 112

Figure 5.5 The sensitivity of spiral patterned and unpatterned coating in temperature sensing .. 113

Figure 5.6 Experimental setup to validate the alcohol sensing activities of spiral patterned POF as multiple optical channels .. 115

Figure 5.7 Spectroscopy responses of multiple optical channels sensor in blue, green, and red wavelengths for (a) methanol, (b) ethanol and (c) isopropanol ... 118
Figure 5.8 Schematic diagram of the alcohol sensing mechanism activated using visible white light illumination (a) in air at room temperature (b) with visible white light and (c) with methanol exposure ... 120

Figure 5.9 The responses of multiple optical channels sensor in channel (a) blue (b) green and (c) red .. 121

Figure 5.10 The relative intensity modulation (RIM) of multiple optical channels sensor exposed to ethanol, methanol and isopropanol vapors.. 123

Figure 5.11 The validation of the multiple optical channels sensor for (a) channel blue/ channel red (b) channel green/ channel red.. 124
LIST OF TABLES

Table 2.1 Properties of Zinc Oxide...27

Table 4.1 Differences of normalized coupling output, ΔI between spiral patterned and unpatterned POFs for different widths of ZnO coating from 0 to 7 mm95
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>mM</td>
<td>Mili mole</td>
</tr>
<tr>
<td>C$_2$H$_5$OH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>CH$_3$OH</td>
<td>Methanol</td>
</tr>
<tr>
<td>C$_3$H$_8$O</td>
<td>Isopropanol</td>
</tr>
<tr>
<td>C6H${12}$N$_4$</td>
<td>Hexamethylenetetramine</td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>O$_2$</td>
<td>Oxygen</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbondioxide</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>Water</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>ZAH</td>
<td>Zinc acetate hydrate</td>
</tr>
<tr>
<td>Zn(CH$_3$COO)$_2$</td>
<td>Zinc acetate</td>
</tr>
<tr>
<td>Zn(NO$_2$)$_3$</td>
<td>Zinc Nitrate hexahydrate</td>
</tr>
<tr>
<td>Zn(OH)$_2$</td>
<td>Zinc hydroxide</td>
</tr>
<tr>
<td>ZnCl$_2$</td>
<td>Zinc chloride</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc oxide</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>Zinc ions</td>
</tr>
<tr>
<td>O$^{2-}$</td>
<td>Oxygen ions</td>
</tr>
</tbody>
</table>
OH⁻ : Hydroxyl ions

dB/km : Decibels/kilometer

V_{pp} : Peak-to-peak Voltage

σ : Beam waist

r : Distance from the center of the beam

C_{sc} : Scattering cross section

ρ_a : Rods density

ψ : Portion of Scattered Light

θ_{inc} : Incident angle

θ_c : Critical angle

Δz : Width of Segment

η_z : Coupling coefficient

I_p : Coupling output of spiral pattern

I_{up} : Coupling output of unpatterned

n : Refractive index

ΔI : Normalized coupling output

ϕ : Azimuthal angle

HMT : Hexamethylenetetramine

MMF : Multimode Fiber

SOF : Silica Optical Fiber

OFSs : Optical Fiber Sensors

POF : Plastic Optical Fiber

AI : Artificial intelligence

PMMA : Polymethyl Methacrylate
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>FBG</td>
<td>Fiber Bragg Grating</td>
</tr>
<tr>
<td>DI</td>
<td>Deionized</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>1D</td>
<td>One Dimension</td>
</tr>
<tr>
<td>2D</td>
<td>Two Dimension</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimension</td>
</tr>
<tr>
<td>ZAH</td>
<td>Zinc Acetate Hydrate</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy-dispersive X-ray</td>
</tr>
<tr>
<td>SPR</td>
<td>Space Plasmon Resonance</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>CTOP</td>
<td>Specialty Amorphous Fluorinated Polymer</td>
</tr>
<tr>
<td>DMA</td>
<td>Dynamic Mechanical Analysis</td>
</tr>
<tr>
<td>MPOF</td>
<td>Multimode Plastic Optical Fiber</td>
</tr>
<tr>
<td>OTDR</td>
<td>Optical Time-Domain Reflectometry</td>
</tr>
<tr>
<td>OFDR</td>
<td>Optical Frequency-Domain Reflectometry</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage-Controlled Oscillator</td>
</tr>
<tr>
<td>RI</td>
<td>Refractive Index</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>VZn</td>
<td>Zinc Vacancies</td>
</tr>
<tr>
<td>ca.</td>
<td>Around, about or approximately</td>
</tr>
<tr>
<td>RIM</td>
<td>Relative Intensity Modulation</td>
</tr>
<tr>
<td>GOF</td>
<td>Glass Optical Fiber</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Publications and Papers Presented

Patent Filing Reports
CHAPTER 1: INTRODUCTION

1.1 General

Historically, the early research on optical fiber sensors (OFSs) was started in the 70s and related to medical instrument that was such as a fiber-optic endoscope consisting of a bundle of flexible glass fibres able to coherently transmit an image (Edmonson, 1991). Nowadays, various approaches and technologies have been developed to gain attention in sensing applications. Optical sensors using fiber optics definitely provide reliable solutions in many fields since optical fibers can measure physical properties such as strain (Ohno, Naruse, Kihara, & Shimada, 2001), displacement (Rahman, Harun, Yasin, & Ahmad, 2012), temperature (Tyler et al., 2009), pressure (W. Wang, Wu, Tian, Niezrecki, & Wang, 2010), velocity (Weng et al., 2006) and magnetism (Lv, Zhao, Wang, & Wang, 2014). Every year, exploring the potentials of OFSs keep receiving high interest because optical fibers offer well known advantages such as immunity to electrical and magnetic fields, low attenuation, wide transmission bandwidth, small physical size and weight, increased flexibility, analog and digital transmission, electrical insulation, immunity to electromagnetic interference and interception and receiver sensitivity. Beside these properties, FOSs also hold enormous potential for the use in chemical applications due to the high sensitivity and slightly invasive technique (Mescia & Prudenzano, 2013) which is important in monitoring environmental pollution, mainly if FOSs are applied in radiation zone.

This thesis is concerned with the development of a simple and cost effective system based on light scattering from zinc oxide (ZnO) nanorods grown in spiral pattern on plastic optical fiber (POF) for temperature and alcohol vapors sensing applications. The performance of the system is investigated based on the simulation and experimental