I hereby declare that I have read through this report entitle “Analysis of Asynchronous and Synchronous Buck Converter for Battery Charging” and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Power Electronic and Drive).

Signature : ..

Supervisor’s Name : ..

Date : ..
ANALYSIS OF ASYNCHRONOUS AND SYNCHRONOUS BUCK CONVERTER FOR BATTERY CHARGING

MOHAMAD IZZAT AMIR BIN MOHD SANURI

A report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering (Power Electronic and Drive)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015
DECLARATION

I declare that this report entitled “Analysis of Asynchronous and Synchronous Buck Converter for Battery Charging” is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ..
Name : ..
Date : ..
DEDICATION

To my beloved mother and father
First and foremost I would like to express my thanks to God because of His love and strength that He given to me to finish the project analysis and writing the report. I do thank for His blessings to my daily life, good health, healthy mind and good ideas. I would also like to take this opportunity to express my sincere acknowledgement to my supervisor Miss Siti Azura Binti Ahmad Tarusan for her essential supervision, support and encouragement towards the completion of this thesis.

My grateful thanks credit to my parents for supporting me throughout all my studies at Universiti Teknikal Malaysia Melaka (UTeM) for four years. Special thanks to my family for their endless support and encouragement. My deepest gratitude also extends to all lecturers of UTeM especially FKE lecturers for their guidance, ideas, knowledge and support in completing this project.

Lastly, my special thanks to all my friends for sharing their knowledge and time especially during finishing this report and thank you to everyone who had been to the crucial parts of realization of this project.
ABSTRACT

Power electronic device is widely used in industry as equipment to protect others device and saving the consumption of energy. To develop the electric vehicle (EV) and uninterruptible power system (UPS), power electronic research is done. Buck converter circuit is the one of power electronics circuit that used to step down the output voltage. In buck converter circuit, it has two topologies that used to operate which are asynchronous and synchronous. These two topologies have their own construction of circuit and circuit efficiency. However to make sure the circuit in stable system, the feedback circuit is develop in order to regulate the output voltage. Main objective of this project is to design, simulate, analyse and compare the Asynchronous and Synchronous buck converter efficiency. In addition, to study the voltage mode control of these different topologies. This project consists of two parts which are analysis at power stage of buck converter and design the circuit of voltage mode control for each circuit. At power stage circuit, the efficiency of these two circuits is compared. To validate the result, the step of experiments is repeat again by using others duty cycle value. Thus the suitable value for parameters that used in type III compensator is finding in order to design the voltage mode control circuit. Then, the result of comparison of these circuits is compared. In a nutshell, this project proved the Synchronous topologies is more efficient compared to Asynchronous if the circuit is operate at half and above the value of duty cycle.
ABSTRAK

TABLE OF CONTENTS

PAGES

DECLARATION

DEDICATION

ACKNOWLEDGEMENTS i

ABSTRACT ii

ABSTRAK iii

TABLE OF CONTENTS iv

LIST OF TABLE vi

LIST OF FIGURE vii

CHAPTER

1. INTRODUCTION 1

1.0 Introduction 1

1.1 Project Background 1 - 2

1.2 Project Motivation 2

1.3 Problem Statement 2 – 3
2. THEORIES AND LITERATURE REVIEW

2.0 Introduction 5

2.1 Power Converter- DC-DC Converter 5

2.1.1 DC-DC converter – Buck converter 8

2.1.1.1 Analysis for the switch closed 9

2.1.1.2 Analysis for the switch open 10

2.1.2 Buck converter operation 11

2.1.2.1 Continuous inductor current mode 12

2.1.3 Buck converter design 13

2.1.4 Buck converter topologies 16

2.1.4.1 Asynchronous buck converter 16

2.1.4.2 Synchronous buck converter 17

2.2 Voltage mode control 17

2.3 Compensator 19

2.3.1 Type III compensator 19

2.4 Previous related works 24

3. RESEARCH METHODOLOGY 26

3.0 Introduction 26
3.1 Project
Flowchart

26

3.2 Analytical

3.2.1 Mathematical Modelling

30 - 32

3.2.2 State Equations of buck converter

33

3.2.2.1 State when switch close

33 - 35

3.2.2.2 State when switch open

36 - 39

3.3 Design of power stage circuit of Asynchronous and Synchronous Buck Converter

3.3.1 Simulation design for circuit of Asynchronous Buck Converter Power Stage

43

3.3.2 Simulation design for circuit of Synchronous Buck Converter Power Stage

45

3.4 Design procedure of type III compensator

46

3.5 Simulation design for Asynchronous buck converter circuit connected to the voltage mode control circuit (closed-loop system)

49

3.6 Simulation design for Synchronous buck converter circuit connected to the voltage mode control circuit (closed-loop system)

51

4. RESULT AND DISCUSSION

4.0 Introduction

53

4.1 Results of power stage circuit of Asynchronous and Synchronous

53
Buck Converter (used 0.3, 0.5 and 0.7 value of duty cycle, D)

4.1.1 Simulation results for 0.3 Duty cycle

4.1.1.1 Asynchronous buck converter results

4.1.1.1.1 Results of output part in the Asynchronous buck converter when D=0.3 (at power stage circuit)

4.1.1.1.2 Results of input part in the Asynchronous buck converter when D=0.3 (at power stage circuit)

4.1.1.1.3 Efficiency results of Asynchronous buck converter when D=0.3 (at power stage circuit)

4.1.1.2 Synchronous buck converter results

4.1.1.2.1 Results of output part in the Synchronous buck converter when D=0.3 (at power stage circuit)

4.1.1.2.2 Results of input part in the Synchronous buck converter when D=0.3 (at power stage circuit)

4.1.1.2.3 Efficiency results of Synchronous buck converter when D=0.3 (at power stage circuit)

4.1.1.3 Comparison table of results of Asynchronous and Synchronous buck converter when D=0.3 (at power stage circuit)

4.1.2 Simulation results for 0.5 Duty cycle

4.1.2.1 Comparison table of results of Asynchronous and Synchronous buck converter when D=0.5 (at power stage circuit)

4.1.3 Simulation results for 0.7 Duty cycle
4.1.3.1 Comparison table of results of Asynchronous and Synchronous buck converter when D=0.7 (at power stage circuit)

4.2 Summary results of Asynchronous and Synchronous buck converter at power stage circuit

4.3 Type III compensator results

4.4 Simulation results of voltage mode control for Asynchronous buck converter

4.5 Simulation results of voltage mode control for Synchronous buck converter

5. CONCLUSION AND RECOMMENDATION

5.0 Introduction

5.1 Conclusions

5.2 Recommendation

REFERENCES

APPENDICES

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Specifications of design parameters of buck converter</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Results of parameters</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison results of Asynchronous and Synchronous buck converter</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison results of Asynchronous and Synchronous buck converter</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison results of Asynchronous and Synchronous buck converter</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>Output voltage value in theoretical</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Output current value in theoretical</td>
<td>78</td>
</tr>
<tr>
<td>4.7</td>
<td>Output power in theoretical</td>
<td>80</td>
</tr>
<tr>
<td>4.8</td>
<td>Parameters value used in type III compensator (capacitors and resistors)</td>
<td>91</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Basic circuit of linear voltage regulator</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Basic switching converter circuit</td>
<td>6-7</td>
</tr>
<tr>
<td>2.3</td>
<td>Block diagram of DC-DC converter</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Ideal circuit of buck converter during ON or OFF condition</td>
<td>8-9</td>
</tr>
<tr>
<td>2.5</td>
<td>Operation waveforms of buck converter in continuous inductor current mode</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>The schematic circuit of asynchronous buck converter</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>The schematics circuit of synchronous buck converter circuit</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>The circuit of buck converter power stage connected to the control stage</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>The type III compensator circuit and its transfer function</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Bode plot of type III compensator</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>Buck converter circuit connected to the type III compensator</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>The asymptotic bode gain plot for the type III compensator and the gain and phase equation for the compensated system</td>
<td>24</td>
</tr>
</tbody>
</table>
2.13 Efficiency graph of Asynchronous and Synchronous buck converter 25
3.1 Sequence flowchart during analysis the project 28 - 29
3.2 Condition when switch close 33
3.3 Condition when switch open 36
3.4 Schematic circuit of Asynchronous Buck Converter 44
3.5 Pulse width modulation (PWM) signal to operate switching device 44
3.6 Schematic circuit of Synchronous Buck Converter 45
3.7 Pulse width modulation (PWM) signal to the switching device in the synchronous buck converter topology 46
3.8 Type III compensator circuit 46
3.9 Programming code of R5 and R6 47
3.10 Coding of open loop buck converter to generate the bode diagram 47
3.11 Coding of close loop buck converter to generate the bode diagram and calculate the suitable value for parameters in type III compensator 48
3.12 Asynchronous buck converter connected to voltage mode control circuit 49
3.13 Synchronous buck converter connected to the voltage mode control circuit 51
4.1 Inductor current in Asynchronous buck converter circuit 55
4.2 Output voltage in Asynchronous buck converter 57
4.3 Output current in Asynchronous buck converter 58
4.4 Output power in Asynchronous buck converter
4.5 Input voltage in Asynchronous buck converter
4.6 Input current in Asynchronous buck converter
4.7 Input power in Asynchronous buck converter
4.8 Efficiency of Asynchronous buck converter
4.9 Inductor current in Synchronous buck converter
4.10 Output voltage in Synchronous buck converter
4.11 Output current of Synchronous buck converter
4.12 Output power of Synchronous buck converter
4.13 Input voltage of Synchronous buck converter
4.14 Input current of Synchronous buck converter
4.15 Input power of Synchronous buck converter
4.16(a) Efficiency of Synchronous buck converter
4.16(b) Efficiency of Synchronous after zoomed in
4.17 Graph of output voltage for Asynchronous and Synchronous when
duty cycle values are 0.3, 0.5 and 0.7
4.18 Graph of output current for Asynchronous and Synchronous when
duty cycle values are 0.3, 0.5 and 0.7
4.19 Graph of output power for Asynchronous and Synchronous when
the duty cycle values are 0.3, 0.5 and 0.7
4.20 Graph of input current for Asynchronous and Synchronous when
the duty cycle values are 0.3, 0.5 and 0.7
4.21 Graph of input power for Asynchronous and Synchronous when the duty cycle values are 0.3, 0.5 and 0.7

4.22 Graph of efficiency for Asynchronous and Synchronous when the duty cycle values are 0.3, 0.5 and 0.7

4.23 Values of R5 and R6

4.24(a) Resulting of display parameters

4.24(b) Transfer function of buck converter

4.25 Bode plot diagram of buck converter transfer function

4.26 Bode diagram obtain from closed loop programme code

4.27 Bode diagram obtain from closed loop programme code after insert new gain value

4.28(a) Parameters value used in close loop programme code

4.28(b) Parameters value used in closed loop programme code

4.28(c) Parameters value used in close loop programme code

4.28(d) Parameters value to use in type III compensator

4.29 Graph results of Asynchronous buck converter connected to voltage mode control

4.30 Graph results of Synchronous buck converter connected to the voltage mode control circuit
CHAPTER 1

INTRODUCTION

1.0 Introduction

This chapter describes the project background, problem statement, objectives and scope of project. For this background of project it describes the types of dc-dc converter, the types of topologies that used in buck converter circuit and the type of switching mode control that used which is voltage mode control.

1.1 Project Background

There are many types of switch mode of power converter used in field of power electronic circuit such as switch mode of dc-dc converters. In categories of dc-dc converters, they are divided in some of types such as buck converter, boost converter, buck-boost converter and Ćuk converter etc. The main objective and scope of this proposal are to analyse and study buck converter. Every types of dc-dc converter has the method to control the switching. There are some of types of switching control normally used in circuit of dc-dc converter such as voltage mode control, current mode control, hysteretic
mode control in switch mode power supplies (SMPS), sliding mode control and many more. Each method has some advantages and disadvantages in terms of efficiency of power circuit, noise and cost there need to produce the circuit.

1.2 Project Motivation

Nowadays, application of power electronics device is one important thing in daily life as equipment to protect the devices from damages and as a device to saving the power consumption. The non-isolated converter which is DC–DC converter is one of the power electronics field. There are many applications of DC–DC converter such as application in the development of electric vehicle (EV), uninterruptible power system (UPS), energy conversion, battery charger and many more. In general, application of DC–DC converter is a device that used to control performance of load by control the frequency, voltage and current in the circuit. Besides that, it also as an equipment to regulated the output voltage value.

1.3 Problem Statement

There are many types of switching controller to generate switching signal for DC-DC converter. The examples types of switching controller are voltage mode control, current mode control, hysteretic mode control in switch mode power supplies (SMPS) and sliding mode control. Voltage mode control is the first switching regulator design where it has single voltage feedback in circuit. The operation for circuit of voltage mode control is a pulse width modulation performed by comparing a constant ramp waveform and the signal of voltage error. Voltage mode control has low efficiency compared to current mode control because it causes ringing and instability if it is not compensated. The type of compensator circuit used in voltage mode control circuit is compensator type III. However,
the circuit for voltage mode control is simplest compared to the circuit of current mode control. Meanwhile, method of current mode control has two loops in the circuit which they are inner loop and outer loop. Inner loop for loop of current control and outer loop for voltage mode control. In inner loop of current mode control circuit, it consists of output filter inductor, so current mode control will eliminate the pole of inductor and second order characteristic. There are two types of buck converter circuit which are asynchronous buck converter and synchronous buck converter. In circuit of asynchronous buck converter, it used single switching device and one diode to complete the operation of cycle which are ON and OFF condition. While Synchronous buck converter used two switching devices in the circuit to operate and complete the ON and OFF cycle condition. Based on these two types of buck converter circuit, each circuit has their own characteristics advantages and disadvantages. Besides that, the different topologies of buck converter also have their efficiency value which is asynchronous and synchronous has different value in terms of efficiency circuit at power stage circuit. The value of duty cycle also can effect to the value of output voltage of the buck converter circuit. In general, the efficiency of synchronous is better than the asynchronous buck converter topology. In comparison of their output voltage ripple, the output voltage ripple value produces in synchronous is less than the asynchronous buck converter. So, it make the efficiency of synchronous is better than asynchronous. However, the buck converter circuit whether asynchronous or synchronous topologies not stable if it circuit has not circuit of mode control which is feedback circuit to regulate the output voltage value. To make sure these two topologies of buck converter operate in stable condition, it circuit must connected to the mode control circuit whether voltage mode control, current mode control and so on.

1.4 Objectives

Project objectives are:

i. To study and simulate of voltage mode control of Asynchronous and Synchronous buck converter using Matlab and Pspice software.
ii. To compare the performance of power stage circuit between Asynchronous and Synchronous buck converter in term of their efficiency.

1.5 Scope

The scopes for this project are:

i. In this project, the type of converter that will be use is asynchronous and synchronous buck converter (DC – DC converter) which is the input voltage is 30V and the output voltage is 15V. Analysis of efficiency circuit will be done at this power stage and the values of duty cycle that will be used are 0.3, 0.5 and 0.7.

ii. The mode control that used for this project is voltage mode control and the type of compensator used in this project is type III compensator.

iii. This project consists of simulation and do not cover hardware part, simulation at the power stage circuit of asynchronous and synchronous buck converter using Matlab software. Matlab software also used to get bode diagram graph to determine the stability condition in order to get the suitable value for compensator that will used for this project. Pspice software is used to simulate complete circuit of buck converter whether asynchronous or synchronous connected to the voltage mode control circuit.
CHAPTER 2

THEORIES AND LITERATURE REVIEWS

2.0 Introduction

This chapter describes the basic theories related to the buck converter circuit and the type of mode control that will be used in this project which is voltage mode control. This chapter also consists of theories about type III compensator.

2.1 Power Converter – DC-DC Converter

Power converter is power electronic circuit that converts one type of electrical energy to another form. Several types of power electronic circuit converter in electrical engineering are AC-DC converter, DC-AC converter, AC-AC converter and DC-DC converter. In power electronic circuit, converter is the intermediate device between source and load [1]. The function of DC-DC converter is same as transformer function where to convert one level of voltage value or current value to another level either step up or step down voltage value. Normally power converter circuit have options to control the output voltage. In linear voltage regulators circuit, it controls by using transistor. Disadvantages
of this circuit are creates voltage drop at transistor and decrease the efficiency of circuit. Figure 2.1 shows the basic circuit of linear voltage regulator.

![Figure 2.1: Basic circuit of linear voltage regulator.](image)

However, in power converter circuit, it also has the device to control the circuit such as BJT and MOSFET. Controller of the circuit or switching is the main component to operate the power converter. A basic switching converter is better than linear voltage regulator because it can increase the efficiency of the circuit. In switching converter circuit, transistor operates either fully on or off condition; by the way transistors do not absorb any power because there is no voltage drop at the transistor. Figure 2.2 shows a basic switching converter circuit.

![Figure 2.2: Basic switching converter circuit.](image)
In DC-DC converter circuit, it is divided into some parts such as input, switches, filter, and output parts [2]. For the input part, it has only dc voltage supply. In the switching part, it consists of devices to control the switching such as BJT and MOSFET. For the filter part, it consists of inductor and capacitor as filtering devices, which is a low-pass filter. For the output part, it has a resistor as a load. Figure 2.3 shows the block diagram of DC-DC converter [2].