POSITION TRACKING OF AUTOMATIC RACK AND PINION STEERING LINKAGE SYSTEM THROUGH HARDWARE IN THE LOOP TESTING

MOHD ZAKARIA BIN MOHAMMAD NASIR
ABDUL RAHMAN DWIJOTOMO
MOHD AZMAN ABDULLAH
DR. MUHAMMAD ZAHIR BIN HASSAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
Position Tracking of Automatic Rack and Pinion Steering Linkage System through Hardware In The Loop Testing

Mohd Zakaria Mohd Nasir, Abdul Rahman Dwijotomo, Department of Automotive, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Ayer Keroh, Melaka

Mohd Azman Abdullah, Muhammad Zahir Hassan

Department of Automotive, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Ayer Keroh, Melaka

mzakaria@utem.edu.my, arjay.mix88@gmail.com

Abstract—Vehicle handling behavior is much influenced by the performance of steering system and its mechanism. Steering linkage play a very important role in maneuvering of a vehicle. In this paper, a set of kinematic relations of rack and pinion steering linkage system are modeled in MATLAB SIMULINK environment based on kinematic model equations is presented in to study the relationship between steering wheel angle and tire angle. A Hardware-in-the-loop simulations (HILS) test rig with actual rack and pinion mechanism has been set up using XPC TARGET environment, LVDT and encoder sensors installed for data measurement at various steering angle. Results from simulation model demonstrate a linear pattern occurred from maximum lock-to-lock steering wheel angle and it is closely follow the sine input trend through HILS experiment with acceptable error.

Keywords- Rack and pinion, Steering linkage, HILS

I. INTRODUCTION

Steering a car is a driver responsibility as guidance for motor vehicle direction. It involves the driver looking ahead at the intended path relative to the car and somehow processing the preview information and the current position data to yield the steering wheel or control inputs needed to make the car follow the desired path.

Steering linkages play a very important role in maneuvering of a vehicle. Amongst the steering linkages, the rack and pinion steering linkage is the most popular and widely used in automotive passenger vehicle [1-5]. Thus it is chosen in this study. This linkage consists of two steering arms (wheel knuckle), two tie rods end as well as a rack and pinion as depicted in Fig. 1. In future automatic steering system, the electric power steering is a vital component for control and improving vehicle handling and stability [6, 7].

The rack and pinion system convert the rotational motion of the steering wheel or driver input into linear motion required to turn the tire, and provide gear reduction or steering ratio, making easier to turn the tire. In most passenger vehicle, approximately three or four complete revolutions of steering wheel is required for the tire turn maximum lock-to-lock from far left to far right. The pinion gear is directly attached to the steering shaft which connected to steering wheel. As a result, when the steering wheel is turned, the pinion shafts also turn which push the rack move either left or right where lead the tires to turn into the desired direction.

In this paper, six bar rack and pinion type is modeled in MATLAB SIMULINK to predict the correlation between steering wheel angle, steering rack and tire angle.
The rack and pinion linkages are complex and spatial mechanisms because of the parameter of caster angle and kingpin inclination are in XZ and YZ plane. However, those parameters have little influence on the functionality of the steering linkage [1,2]. As suggested in literature [8-10], the caster angle and the kingpin inclination provided to correlate suspension and steering system can be neglected. Accordingly, the actual rack and pinion steering linkage can be modeled as a planar linkage as shown in Fig. 2. In this paper, only planar modeling is demonstrated for better understanding of the modeling approach.

The rack and pinion linkage model is formulated as the cinematic equations as a six bar planar linkage [1]. The cinematic equation for the rack and pinion can be written in Eq. (1) where \(w_i \) is the wheel track, \(l_i \) is rack length and \(b_i \) is the rack travel shown in Fig. 2.

\[
b = \frac{w_i - l_i}{2} + b_i
\]

From Fig. 2, it produces cosine and sine functions in terms of scalar components where \(h \) is distance from front wheel axis, \(l_i \) is tie rod length and \(l \) is steering arm length.

\[
l_i \cos \theta_i + l_i \cos \theta_{12} = b_i
\]

\[
l_i \sin \theta_i + l_i \sin \theta_{12} = h
\]

\[
\theta_{12} = \theta_1 + \theta_2
\]

Equations (1) and (2) can be expressed as \(\theta_1 = \arctan \left(\frac{s \theta_1}{c \theta_1} \right) \), where

\[
s \theta_1 = \frac{2z}{1 + z^2}
\]

\[
c \theta_1 = \frac{1 - z^2}{1 + z^2}
\]

The value of \(z \) is the solution of a quadratic equation that obtained from the cinematic equations in (1) and (2). The equation can be written as

\[
z_1 = \frac{h + \sqrt{h^2 - k^2 + b^2}}{k + b}
\]

\[
z_2 = \frac{h - \sqrt{h^2 - k^2 + b^2}}{k + b}
\]

\[
k = \frac{h^2 + b^2 + l_i^2 - l^2}{2l_i}
\]

III. STEERING SYSTEM MODEL

The steering system is modeled in MATLAB SIMULINK environment based on actual dimension of rack and pinion steering linkage from Malaysian National Car. The steering system model is developed based on the above equations. In this study, a planar model is developed for the standard configuration of the rack and pinion steering linkage by eliminating the kingpin inclination, caster angle and kingpin offset.

The mathematical modeling considered in this study consists of a DC motor model, rack and pinion model and the kinematic model of the steering system. A motor actuator is modeled in this steering system to represent steering input. Fig. 3 shows the pinion as an input and the wheel angle as an output which function as an input for vehicle model. Some modeling assumptions considered in this study are as follows; the effect of steering inertia is neglected, the front left and front right wheels are assumed to have identical tire angle under excitation from steering input, the efficiency of the DC motor shaft to pinion rotating shaft is neglected.

Figure 3. Rack and pinion steering system model in MATLAB SIMULINK
IV. HARDWARE-IN-THE-LOOP SIMULATION (HILS) TEST SETUP

The relation between rotation of pinion and displacement of rack can be defined by perform an experimental on actual rack and pinion steering system through Hardware-in-the-loop simulation (HILS). It can be useful as a development tool since it more repeatable and cost effective than a full in-vehicle test [11, 12]. The front tire is set in normal position, and Linear Variable Differential Transformer (LVDT) and rotary encoder sensors used for measurement. The DC motor represented as an actuator to generate desired steering wheel angle and it allowed rotating about its rotational axis.

The rotational motion of the pinion is converted into linear motion by the steering rack. The linear motion of the steering rack is allowed to rotate the front tires at its steering axis. The actual steering rack of a compact passenger car is used in HILS testing shown in Fig. 4 using MATLAB XPC TARGET environment. In HILS testing, rotary encoder was used to measure the rotation angle of the steering wheel or DC motor pinion angle. Meanwhile, the LVDT was used to measure the linear displacement of the steering rack which than causes the tire turning into the desired angle.

The output from both sensors (LVDT and rotary encoder) is transferred into XPC TARGET in Matlab software. The output data from experiment will be compared with steering system model developed in MATLAB SIMULINK environment.

Position tracking of DC motor is required to perform to ensure the control system design for motor is good enough to follow the desired steering input. Fig. 6 show the controller of DC motor is developed for position tracking in HILS testing. This test is performed on actual rack and pinion steering linkage with both tire contact on ground and carry 150 kg load for engine weight representation.

XPC TARGET was used to perform model identification for DC motor which must have capabilities to run under various degree of steering input. Signal generator used to represent steering input such as sine 30° mean turn the steering wheel 30° clockwise and anticlockwise. The desired steering position from the signal input given is compared with the actual angle position of the motor rotating shaft measured by rotary encoder, which results in position deviation error denoted by \(e_a \). The input signal of DC motor is voltage, \(U \), which is represented as the required rotational DC motor speed that is commanded to a pulse generator’s block. The error is weighted by the control proportional gain, \(P \), which resulting in voltage.

\[
U = P \cdot e_a
\]

Figure 6. Position tracking controller developed for HILS

V. SIMULATION AND EXPERIMENT RESULTS

The position tracking test for DC motor is performed to ensure the motor could follow the desired steering input. When steering wheel is turn by giving input signal, the DC motor tend to follow the desired signal by rotating the pinion angle which than pull or push the tie rod end to turn the tires to the desired angle. Fig. 7 shows the position tracking test for
sine wave input for 30°. It demonstrates the actual rack and pinion measured through LVDT sensor and pinion angle closely follow the desired angle of steering input with acceptable error. The control structure therefore can be used to test the six bar rack and pinion linkage system for various steering input.

The result of the pure algorithm simulation of steering system developed in MATLAB SIMULINK and the Hardware-in-the-Simulations (HILS) test are respectively shown as Fig 8 and Fig 9. The sine steer input parameter at 90° clockwise and anticlockwise at high frequency was used to represent steering wheel rotation angle.

It is demonstrated the steering system model developed with six bar linkage follow the desired angle with acceptable position error. Fig 9 shows the results gathered from HILS testing where the steering system follow the desired trajectory also with less error in average compared with simulations result. It is evident that the HILS has been developed can simulate better for real drive system.

Figure 10 shows simulation and experimental results for rack and pinion steering linkage system. Y-axis represents the steering rack displacement and X-axis represents the steering wheel angle. The linear trend occurred when the steering wheel is turn maximum lock-to-lock (610° clockwise and 610° anticlockwise). The dash line in the plotted graph shows a nonlinear behavior from HILS experimental data at 200° anticlockwise. This is due to backlash in the gearbox of the steering linkage mechanism. Gear pairs like rack and pinion have clearance between gear teeth matching called backlash. Backlash is clearance between mating components and as the amount of lost motion due to clearance or slackness. When pinion are rotated, slack will happen at a point where it has clearance between pinion and rack. This happen at the range of 22 mm to 25 mm as referred to Fig. 10. To simplify the relationship between the rack and pinion steering mechanisms, the rack displacement is assumed directly proportional to the pinion rotational angle with relationship $Y = 0.00005X - 0.001$.

Figure 7. Positioning tracking for DC motor

Figure 8. Simulation result of sine input for automatic steering system

Figure 9. HILS result of sine input for automatic steering system

Figure 10. Relation of rack displacement and pinion angle in MATLAB and HILS Steering System
The steering system model, the correlation between displacement of rack and wheel angle can be defined as shown in Fig. 11. The maximum length of 59.5mm will generate 0.5° wheel angle.

![Graph of Wheel Angle vs Rack Displacement](image)

Figure 11. Relation of rack displacement and tire angle in Steering System

VI. CONCLUSIONS

The entire steering linkage system is modeled in MATLAB SIMULINK environment which represents actual dimension based on kinematic equations. The relationship of steering rack displacement and pinion angle is achieved by performing simulation and experimental measurement for actual rack and pinion steering linkage system. A result from sine input simulation demonstrates a good pattern where it closely follows the trend occurred through HILS experiment with acceptable error. The relation between rack displacement can be assumed directly proportional to the pinion angle with $Y = 0.0005X - 0.001$. The maximum rack displacement from normal position is 59.5 mm provides maximum wheel angle 0.5 degree.

ACKNOWLEDGMENT

This work is supported by the University Teknikal Malaysia Melaka (UTeM) through FRGS-F0079 project entitled Development Of Lateral and Longitudinal Driver Model for Autonomous Vehicle Control led by the author. This financial support is gratefully acknowledged.

REFERENCES