This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree in Electronic Engineering Technology (Telecommunication) (Hons.)

By

AHLAM AFIQAH BINTI ZAKARIA
B 071310443
911215-08-5812

FACULTY OF ENGINEERING TECHNOLOGY
2016
TAJUK: Development of Smart Care Application System for Pet By Using Microcontroller

SESII PENGAJIAN: 2016/17 Semester 1

Saya AHLAM AFIQAH BINTI ZAKARIA

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)

☐ SULIT (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TERHAD (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD

Alamat Tetap:

341 Lorong 5, Kampung Larut Tin 34000, Taiping Perak.

Disahkan oleh:

Cop Rasmi _________________

Tariik: 9 Dis 2016

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this report entitled “Development of Smart Care Application System for Pet by Using Microcontroller” is the results of my own research except as cited in references.

Signature :
Author’s Name : Ahlam Afiqah Binti Zakaria
Date : 3 June 2016
APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunications) (Hons.). The member of the supervisory as follow:

.................................

(Project Supervisor)

Ahmad Fauzan Bin Kadmin
This project is to build controlling system for cage. The purpose of this project is to create and develop a system that controlling fan, Liquid Crystal Display (LCD), Bluetooth and also to display temperature/humidity sensor. Smart Care Application System for Pet is a control system which able to dry a pet fur after takes a bath. In this project microcontroller ATmega328 is used as a main component to control whole system and the Integrated Development Environment (IDE) software was used for write program. Microcontroller will interface with the components like temperature/humidity sensor and Bluetooth. Sensors are used to receive and send the signals to the ATmega328 to control this system. Massachusetts Institute of Technology Application Invertors 2 (MIT AI2) software was used. Besides that, to develop a circuit, the Fritzing software was used on this project. In order to realize this project, extensive background studies have been done on temperature/humidity sensors, microcontroller ATmega328, and MIT AI2 and Fritzing software. The basic and important methodologies that have been used in this project are literature review, system development, field testing and build up software. This project can be implemented at home and veterinary.
ABSTRAK

DEDICATION

Alhamdulillah, praise to the Almighty Allah S.W.T
This thesis is dedicated to:

My Parents,
(Mr Zakaria Bin Md Syarif and Mrs Halimah Binti Tamin)

My beloved family,

My Supervisor,
My lecturers

And all my friends
Thanks for their encouragement and support
ACKNOWLEDGEMENTS

Alhamdulillah, thank you Allah because of His blessing, I finally complete and finish my final year project successfully.

During the process to complete my project objective, I do a lot of research either by using internet, reading past year thesis, reference books and journal. With the guidance and support from peoples around me, I finally complete the project due to the time given. Here, I want to give credit to those who helped me to achieve what I had achieved in my final year project.

First and foremost, I would like to express my sincere acknowledgement to my supervisor Ahmad Fauzan Bin Kadmin and co-supervisor Mohd Faizal Bin Zulkifli from the Faculty of Electronic and Computer Technology Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his guidance, advices, valuable and constructive suggestions during the planning and development of this project. Also for his support and encouragement throughout the final year project. Other than that, I would like to thank my entire friend for help me to succeed this project. I would like to thank everyone who is involved in this project either directly or indirectly for their helps and co-operation, and also to my family. Without their support I would not have been able to finish my final year projec
TABLE OF CONTENT

ABSTRACT i
ABSTRAK ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES vi
LIST OF TABLE vii
LIST OF SYMBOLS AND ABBREVIATIONS viii

CHAPTER 1 1
1.1 Background 1
1.2 Problem Statement 2
1.3 Objective 2
1.4 Scope 3
1.5 Project Significance 4
1.6 Summary 4
CHAPTER 2 5

2.1 Types of Dryers 5
 2.1.1 High Pressure Pet Dryers 5
 2.1.2 Low Pressure Dryers 7
 2.1.3 Handheld Dog Dryers 9

2.2 Types of component 9
 2.2.1 Comparison between Bluetooth and ZigBee 9
 2.2.2 Comparison between Arduino UNO and Arduino MEGA 11
 2.2.3 Comparison between DHT11 & DHT22 12
 2.3.4 Types of Fan 13

2.3 Project concept for Smart Care Application System for Pet 14

CHAPTER 3 16

3.1 Project Overview 16
3.2 Project Planning 17
3.3 Method Research 19
 3.3.1 Journal 19
 3.3.2 Book 20
 3.3.3 Website 20
3.4 Project Flow chart 21
3.5 Description Regarding Component

3.5.1 Arduino Uno

3.6 Software Development

3.6.1 Integrated Development Environment (IDE)

3.6.2 MIT Application Inventor Software

3.7 Hardware Development (Circuit Building)

3.7.1 Sketching the circuit

3.7.2 Building the circuit

3.8 Project Scope

CHAPTER 4

4.1 Software

4.1.1 Arduino Sketch

4.1.2 MIT App Inventor 2

4.2 Hardware

4.3 Result

4.3.1 Results display in serial monitor arduino

4.3.2 Results display in android phone

4.3.3 Hardware Development Result.

4.4 Analysis
4.4.1 Analysis fan Button 52
4.4.2 Analysis for Dry time 55
4.5 Discussion of Result 56

CHAPTER 5 59

5.1 Summary of Project 59
5.2 Achievement of Project Objective 60
5.3 Significant of Project 60
5.4 Problem Faced During the Project 60
5.5 Suggestion Of future Work. 61

REFERENCES 62

APPENDICES 64

Part A: Coding In Arduino 64
Part B: MIT APP Design/Block 70
Part C: Interfacing Component in Fritzing 72
Part D: Type of Cat 74
Part E: User Interface Components - App Inventor for Android 76
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison between Bluetooth and ZigBee</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of Bluetooth and Zigbee PROTOCOLS</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison between Arduino UNO and Arduino MEGA</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison between DHT11 and DHT22</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Types of fan</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison Types of Pet Dryer</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Gantt chart for PSM 1</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Gantt chart for PSM 2</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of Pin</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Function button</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Dry Time for Cat Fur</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1.1 Project Diagram Smart Care Application System for Pet 3
1.2 Project Flow (connection/Diagram of System) 4
2.1 Flying Simple Grooming Dryer (Forced –Air Dryer) 6
2.2 The B-Air Bear Power Dryer (High Velocity Dryer) 7
2.3 Oster Hi-Velocity Adjustable Table and Cage Dryer (Stand dryers) 8
2.4 The cage dryer room 8
2.5 Comfort Dry Dryers (Handheld dog dryers) 9
2.6 The difference between DHT11 and DHT22 13
2.7 The project diagram of smart care application system for pet 14
3.1 Flowchart of system 22
3.2 Arduino Uno Hardware 24
3.3 Arduino Uno Pinout 25
3.4 Arduino Uno Pinout Label 25
3.5 Coding connection DHT 11 using Arduino IDE 27
3.6 Result connection DHT11 using Arduino IDE display
 In serial monitor 28
3.7 Smart Care Application System Design Button Using MIT
 Application inventor software 29
3.8 Smart Care Application System Command/Block Button using
 MIT Application Inventor Software 29
3.9 Sketching connection 2 DC fan control by button using fritzing. 31
3.10 Sketching connection 2 DC fan control by button using Proteus. 31
3.11 Connection between Bluetooth, DHT 11 and Arduino 33
3.12 Prototype Circuit Smart Care Application System for Pet 34
3.13 Prototype for Fan 1 and Fan 2 34
3.14 Project Diagram Smart Care Application System for Pet. 36
3.15 Smart Care Application systems for pet project flow
 (Connection/ Diagram of System) 36
4.1 Library Declaration 38
4.2 Pin Declaration 39
4.3 Coding for DHT11 39
4.4 Coding for Fan on 40
4.5 Coding for Fan off (a) 41
 Coding for Fan off (b) 41
 Coding for Fan off (c) 42
4.6 Coding for Bluetooth 43
4.7 Design for Bluetooth, Fan 1 and Fan 2(Button on) in Mit App 44
4.8 Design for Temperature, Fan 1 and Fan 2 (Button Off) in Mit App 45
4.9 Block for Temperature, Bluetooth, Fan 1 and Fan 2 in MIT App 46
4.10 Circuit for button 47
4.11 Full design smart care application system 47
4.12 Result display in serial monitor for Temperature, Humidity, Fan 1 and Fan 2 on 49
4.13 Result display in serial monitor for Temperature, Humidity, Fan 1 and Fan 2 off 49
4.14 Temperature, Humidity, Bluetooth and Button display in Android Phone before connect 50
4.15 Temperature, Humidity, Bluetooth and Button display in Android Phone after connect 50
4.16 Smart care application system full design 52
4.17 Fan 1 on, when push button (Manual) 53
4.18 Fan 2 on, when push button (Manual) 54
4.19 Full Product smart care application) 57
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>OS</td>
<td>Operation System</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Development Environment</td>
</tr>
<tr>
<td>IJESC</td>
<td>International Journal of Engineering science Computing,</td>
</tr>
<tr>
<td>MIT AI2</td>
<td>Massachusetts Institute of Technology Application Invertor 2</td>
</tr>
<tr>
<td>FYP</td>
<td>Final Year Project</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>BLE</td>
<td>Bluetooth Low Energy</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Max.</td>
<td>Maximum</td>
</tr>
<tr>
<td>GHz</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>I/O</td>
<td>Input / Output</td>
</tr>
<tr>
<td>mA</td>
<td>Mill ampere</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>IOT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>INT</td>
<td>integers</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

This chapter covers the introduction of the project, background study, the problem statement, and the project objective, the scope of work, the project significance and the summary of this project.

1.1 Background

Development of smart care application system for pet is a smart care application system for a health multifunction cage product for pet. This product introduces a versatile cage. Not only that, but this product makes it easy for users to dry fur and save time. The main function of the smart care application system for pet is to dry fur animals after taking a bath.

In smart care application system for pet, microcontroller Arduino UNO ATmega328 was used to control the system. Microcontroller is a controller that is widely used in controlling processes. Microcontroller used to control the devices by receiving the input signals, processing the input signals and sending the output signals. DC fan system, Liquid Crystal Display (LCD) and temperature/humidity sensor are controlled by microcontroller Arduino UNO board in smart care application system for pet.
This project also uses Bluetooth system for data transmission system to a smart phone. Besides that, Massachusetts Institute of Technology (MIT) application inventor also used to design application for Android Operating System (OS). This product can be used at home or at the veterinary.

1.2 Problem Statement

The problem statement of this project is manual pet drying method using hot air dryer takes a lot of time to complete. Hot blow dryer process traumatized pet psychology. Current hot blow dryer might burn the fur. No temperature/humidity display in this system during drying process. The main reason to make smart care application, because users recently bathed cat without drying and it will impact healthy to the pet. From research by user, if using a manual dryer, it will take time to dry the fur.

1.3 Objective

There are few purposes need to be achieve from the completion of this project. The main purpose of this project is:

I. To develop smart care application for pet.
II. To analyses the performance of temperature/humidity and dry time.
1.4 Scope

Smart care application system for pet is a new product that introduces the smart cage multifunction. In Figure 1.1 show that the project diagram Smart Care Application System for Pet and Figure 1.2 show Smart Care Application system for pet project flow (connection/Diagram of System).

First of all this project we were used microcontroller system because Microcontroller system is a single chip computer that can be used in control application. This microcontroller was function as a device that can controller the equipment. Then, we were design the fan control circuit of smart care application for pet by using Arduino sketch. This circuit will show how the fan functioning. Other than that, we also used DHT11 to design the temperature/humidity circuit. Second, we were using Arduino integrated development environment (IDE) compiler as an application to make a program. In this section, we will create a system program that shows how the fan and temperature functions. Besides that, we also program how much time it takes to dry the fur of pet and by using our smart phone android application we will displays the value of temperature/humidity of animals fur after drying in mobile phone.

Third, by using Bluetooth device we make a connection from cage to the phone. This Bluetooth function as a connection for phone to transmit and receive the data. The data that has been program will transfer to the cage by using Bluetooth.
1.5 Project Significance

This project will give the most benefit to users in a wide range of industries, especially to the veterinary company. The veterinary company could develop and implement this project in order to provide better product performance and convenient to the users. This project is easy to implement and also low cost.

1.6 Summary

Pet traumatized emotions disturbed due to noise disturbance from the dryer. Smart care application system for pet by using microcontroller is introduced to overcome this problem in modern technology life. In this chapter are covered about the background, the problem statement, the objectives, and the scope of work and the project significance of this project.
CHAPTER 2
LITERATURE REVIEW

The characteristics and some information of the equipment and materials being used in the project are discussed in this chapter. This chapter explains literature review based on current and exist technologies and information has been done in order to create a specific research about this project. Research hypothesis is been described clearly. From literature review, there will be an analysis regarding the advantages and disadvantages for each phase of this project. The research topics that had been discussed in this chapter are about basic smart care application such as equipment, software and so on.

2.1 Type of Dryers

2.1.1 High Pressure pet Dryers (Forced-Air Dryers and High velocity dryers)

High pressure Pet dryers for pet are pieces of equipment that operate with the same concept as hairdryers, except these are designed for pet fur and are quieter than the hair dryers we’re used to. Some pet’s get spooked by loud noises, so these dryers are designed to quietly and thoroughly get our pet dry and ready for the next step (clipping). While part of the drying process will be done with a towel—and there are some nice microfiber absorbent ones—the
rest of the drying process will be most convenient if we have some mechanical help.

Figure 2.1 show that the Flying Simple Grooming Dryer (Forced –Air Dryer) makes drying furry friend(s) of all sizes an easy task. The specification of lightweight, portable, durable dryer features two switches that allow to comfortably adjusting the speed and heat levels. This dryer can saves efficiency grooming time by up to 60 percent and very slim. The design of the 120-inch stretchable hose and handle placement, gives the capability to maneuver it effortlessly while protecting hands from the selected heat option. By a quick snap on and off clasp, we can customize the dryer with the included three various size nozzles, which will give a different grooming experience. Due to removable filters, this dryer is easy for maintaining cleanliness and keeping pet hair out. With its efficient and powerful function, the dryer is suitable for any pet.

![Figure 2.1: Flying Simple Grooming Dryer (Forced –Air Dryer)](image)

Figure 2.2 show that The B-Air Bear Power I Dryer (High Velocity Dryer) offers powerful drying capability in a light weight and easy to carry size. Constructed of high-impact ABS plastic for durability, the Bear Power I weigh in at only 7.8 lbs. The two-speed motor is insulated for quiet operation. The high RPM on the turbine motor warms the air by approximately 20 degrees Fahrenheit without a heating element. Rubberized feet keep the unit stable during operation. Removable filters are washable for easy cleaning and
keep the unit free of pet hair and debris. The Bear Power I come with a set of four nozzles. The slot nozzle is for long coated pets to prevent knotting while drying. The cone is used for the deepest drying and is great on very thick coated dogs. The brush nozzle is designed for deseeding the coat. The airflow nozzle allows more airflow for drying small dogs, cats, and sensitive areas such as ears and face. This is a compact and light weight with a built-in handle, the Bear Power I can go anywhere. C-ETL-US Approved. Specifications 2 HP, 115V motor 33,000 FPM 7.4 amps Two speeds 7.8 lbs 6 foot hose 165 CFM 10 foot cord. (Joanna Ehlers, 2013).

![Figure 2.2: show that The B-Air Bear Power Dryer (High Velocity Dryer)](image)

2.1.2 Low pressure dryers (Stand Dryers, Cage Dryers)

Low pressure dryers also known as carpet dryer, or cage dryer, this particular type of dog dryer is composed of a large blower that produces a lot of air flow at a very low pressure. This is a gentle way to dry sensitive dog coats. Many low pressure dog dryers come with an auxiliary heater to warm up the air flow and dry the fur faster.
Figure 2.3 show The Oster Hi-Velocity Adjustable Table and Cage Dryer (Stand dryers) is made by a pet-grooming leading manufacturer, Oster, and offers a sturdy dryer with a heating element that can turn off (perfect!) and an ideal design to use on your grooming table or as a cage dryer. For added safety, there is a special overload switch preventing it from overheating. (@lazharichir, 2016)

Figure 2.3: Oster Hi-Velocity Adjustable Table and Cage Dryer (Stand dryers)

Figure 2.4 show the cage dryer room. The cage dryer concept saves labor compared to hand drying, and is appropriate for most types of coats and cuts. Temperature control adds a safety factor far beyond other hands-off drying setups. The air temperature is regulated and uniform within the compartment - there are no hot spots. Furthermore, the operator judges what temperature is appropriate for the animal inside, and sets the exact temperature in degrees Fahrenheit. Setting "fan only" dries without any heat at all.

Figure 2.4: show the cage dryer room