Faculty of Manufacturing Engineering

DEVELOPMENT OF PIPELINE CORROSION INSPECTION SYSTEM USING MACHINE VISION

Syahril Anuar Bin Idris

Doctor of Philosophy

2016
DEVELOPMENT OF PIPELINE CORROSION INSPECTION SYSTEM USING MACHINE VISION

SYAHRIL ANUAR BIN IDRIS

A thesis submitted
in fulfillment of the requirements for the Doctor of Philosophy

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this thesis entitled “Development of Pipeline Corrosion Inspection System Using Machine Vision” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ________________________________
Name : ________________________________
Date : ________________________________
I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature : ________________________________
Name : ________________________________
Date : ________________________________
DEDICATION

To my beloved father and mother,

who gave me the greatest gift anyone could give to another person:

They believed in me.
ABSTRACT

These days, utilization of camera as an inspection tool has been expanded. The flexible function of camera is adequate to obtain different kind of information. In Cawley (2001) review on NDT that was presented in 2001, Radiography, Ultrasonic, Eddy Current, Magnetic Particle, and Penetrant Testing were the top five techniques dominating the NDT market yet Visual Inspection is the most widely applied. Even though the popularity of visual inspection is higher compared to other NDT method, but due to the reliability issues it is often used together with other methods. This research work is focusing on developing a robust corrosion inspection system based on vision sensor that is able to accurately detect and classify corrosion based on the appearance features. By installing at an early stage, inspection system would be able to gather data and at the same time identify and analyse the collected data. Through the results, the analysed data is able to classify the corrosion type based on appearance. From the research work, the method of using image enhancement filters to improve accuracy of vision corrosion inspection system is identified. The detection of each macroscopic surface corrosion types; galvanic; crevice; erosion; pitting and exfoliation using vision inspection able to achieve 79% accuracy using the simulated dataset. The new method of corrosion inspection operation which able to generate prevention plan has qualified the Vision Corrosion Inspection System to be used during preliminary inspection. It is expected that the Vision Corrosion Inspection System can improve vision inspection as the pioneer in NDT method for corrosion inspection. In addition, framework of the developed Vision Corrosion Inspection system is applicable for other applications of vision inspection whereby it can be applied for other inspection process or extending its application to other problems.
ABSTRAK

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Dr. Fairul Azni bin Jafar, from Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Associate Professor Dr. Zamberi bin Jamaluddin from Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM), co-supervisor of this project for his advice and suggestions.

My deepest gratitude to Dr. Ahmad Yusairi bin Bani Hashim and Mr Mahasan bin Mat Ali, also fellow lecturers and assistant engineer from Robotics and Automations Department, for their assistance and efforts in all the lab and analysis work. Not to forget my colleagues, for the advice and motivation in order for me to strive for success.

Special thanks to my father and mother, my siblings and my beloved wife for their financial and moral support in completing this doctorate. Lastly, thank you to everyone who had contributed to the crucial parts in realizing this project.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 Background 1
1.2 Motivation 4
1.3 Problem Statement 5
1.4 Research Question & Hypothesis 7
1.5 Research Objective 8
1.6 Research Scope 8
1.7 Research Outline 10

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction 11
2.2 Visual vs. Vision System 12
2.3 Measuring Visual Inspection Accuracy 17
2.4 Big 5 of Non-destructive Testing 22
2.5 Vision System in Corrosion Inspection 29
2.6 Artificial Intelligence for Vision Inspection 35
2.7 Expert Evaluations for Corrosion Inspection 40
2.8 Summary 45

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction 48
3.2 Research Design 49
3.2.1 Process Diagram 50
3.2.2 Experimental Setup 53
3.3 Instrumentation 55
 3.3.1 Tools 56
 3.3.2 Dataset 60
 3.3.3 Features 67

3.4 Validation 69
 3.4.1 Peak Signal to Noise-Ratio 70
 3.4.2 Cross Validation 72

3.5 Accuracy and Error Rate 74

3.6 Summary 76

CHAPTER 4 78
SYSTEM DESIGN 78

4.1 Introduction 78

4.2 Inspection Framework Design 79
 4.2.1 Image Enhancement 83
 4.2.2 Corrosion Segmentation 86
 4.2.3 Corrosion Classification 88

4.3 Graphical User Interface Design 90
 4.3.1 Corrosion EYE v1.01 91

4.4 Experimental Design 94
 4.4.1 Experiment I – Filter Selection Based on PSNR Value 95
 4.4.2 Experiment II – Detection of Corrosion Image based on Red Channel Histogram 97
 4.4.3 Experiment III – Corrosion Classification based on Appearance Features 99
 4.4.4 Experiment IV – Validating Filter Image Enhancement Algorithm 101
 4.4.5 Experiment V – Validating Corrosion Classification using Cross Validation Method 103

4.5 Summary 105

CHAPTER 5 107
RESULTS AND DISCUSSION 107

5.1 Introduction 107

5.2 Results 108
 5.2.1 Experiment I - Filter Selection based on PSNR value 108
 5.2.2 Experiment II - Detection of Corrosion Image based on Red Channel Histogram 117
 5.2.3 Experiment III - Corrosion Classification based on Appearance Features 122
 5.2.4 Experiment IV - Validating Filter Image Enhancement Algorithm 130
 5.2.5 Experiment V - Validating Corrosion Classification using Cross Validation 138
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Selection Characteristic for Big 5 NDT Techniques</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of Visual Inspection with Big 5 NDT Techniques</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Corrosion Types Based on Image Profile</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>Filter Selection Parameters</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>Classifier Parameters Consideration</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Specification for Boroscope Camera</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Enhancement Filter Selection</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>The Summary of Hypothesis and Validation Analysis</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Description for Each UI Function</td>
<td>92</td>
</tr>
<tr>
<td>5.1</td>
<td>Image Enhancement Using Wavelet De-Noising Filter</td>
<td>109</td>
</tr>
<tr>
<td>5.2</td>
<td>The Value of RMSE and PSNR on Each Filters Images</td>
<td>112</td>
</tr>
<tr>
<td>5.3</td>
<td>Result of Combination of Filter on Two Layer Filter</td>
<td>114</td>
</tr>
<tr>
<td>5.4</td>
<td>Result of Combination of Filter on Four Layer Filter</td>
<td>115</td>
</tr>
<tr>
<td>5.5</td>
<td>Corrosion Features Based on Appearance</td>
<td>123</td>
</tr>
<tr>
<td>5.6</td>
<td>Result for Simulation Dataset for Each Filters and PSNR Value</td>
<td>131</td>
</tr>
<tr>
<td>5.7</td>
<td>Result for Validation Dataset for Each Filter and PSNR Value</td>
<td>134</td>
</tr>
<tr>
<td>5.8</td>
<td>Corrosion Prevention Techniques (Davis, 2000)</td>
<td>155</td>
</tr>
<tr>
<td>5.9</td>
<td>Prevention Technique for Each Corrosion Class</td>
<td>156</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Machine Vision Application</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>NDT Qualification Requirement Based on ASNT</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Corrosion Characterization Based on Appearance.</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Image Inspection Process Cycle Fundamentals</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Research Framework Design for Vision Corrosion Inspection</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Decision Tree Diagram</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Experiment Setup for Vision Corrosion Inspection System</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>USB Boroscope Camera</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Test Bed Design to Simulate Images of Corrosion</td>
<td>61</td>
</tr>
<tr>
<td>3.7</td>
<td>Experimental Setup for Galvanic Corrosion Simulation</td>
<td>62</td>
</tr>
<tr>
<td>3.8</td>
<td>Experimental Setup for Erosion Corrosion Simulation</td>
<td>64</td>
</tr>
<tr>
<td>3.9</td>
<td>Some of Sample Image Acquire for Simulation Dataset</td>
<td>65</td>
</tr>
<tr>
<td>3.10</td>
<td>Sample Images Acquire for Validation Dataset</td>
<td>66</td>
</tr>
<tr>
<td>3.11</td>
<td>Design Decision Tree Used to Classify Corrosion</td>
<td>68</td>
</tr>
<tr>
<td>3.12</td>
<td>Sample Program on Measuring PSNR Value.</td>
<td>72</td>
</tr>
<tr>
<td>3.13</td>
<td>Diagram of Cross Validation for 10-folds Method</td>
<td>73</td>
</tr>
<tr>
<td>3.14</td>
<td>Sample Program for Cross Validation</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>Diagram for the System Design</td>
<td>78</td>
</tr>
<tr>
<td>4.2</td>
<td>Image of Intelligent Pigging</td>
<td>79</td>
</tr>
<tr>
<td>4.3</td>
<td>System Flow of Pipeline Inspection Gauges</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Vision Corrosion Inspection System Installed in Inspection</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Image Enhancement for Corrosion Detection</td>
<td>84</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.23</td>
<td>New Parameter for New Classification Tree</td>
<td>139</td>
</tr>
<tr>
<td>5.24</td>
<td>New Rules for New Classification Tree</td>
<td>140</td>
</tr>
<tr>
<td>5.25</td>
<td>New Classification Tree, Resubstitution Error and Cross Validation</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Loss</td>
<td></td>
</tr>
<tr>
<td>5.26</td>
<td>Test Data Parameter for New Tree</td>
<td>141</td>
</tr>
<tr>
<td>5.27</td>
<td>Validation Dataset Use for Flexibility Test</td>
<td>142</td>
</tr>
<tr>
<td>5.28</td>
<td>Test Data Parameter for Using Validation Dataset</td>
<td>142</td>
</tr>
<tr>
<td>5.29</td>
<td>Accuracy and Error Rate for Classification Tree</td>
<td>148</td>
</tr>
<tr>
<td>5.30</td>
<td>Visual Inspection Process Framework</td>
<td>150</td>
</tr>
<tr>
<td>5.31</td>
<td>New Vision Corrosion Inspection System Framework</td>
<td>151</td>
</tr>
<tr>
<td>5.32</td>
<td>Design Decision Tree Used to Classify Corrosion</td>
<td>153</td>
</tr>
<tr>
<td>5.33</td>
<td>GUI of Corrosion EYE v1.01</td>
<td>157</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Simulation Dataset (Training)</td>
<td>181</td>
</tr>
<tr>
<td>B</td>
<td>Simulation Dataset (Testing)</td>
<td>186</td>
</tr>
<tr>
<td>C</td>
<td>Validation Dataset</td>
<td>191</td>
</tr>
<tr>
<td>D</td>
<td>MATLAB ® Training Programming</td>
<td>192</td>
</tr>
<tr>
<td>E</td>
<td>MATLAB ® Corrosion EYE v1.01 GUI Programming</td>
<td>196</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE

MHz - Mega Hertz
KHz - Kilo Hertz
MB/s - Megabyte per second
° - Degree
s - Seconds
mm - millimetre
Cl⁻ - Chloride
H⁺ - Hydrogen
H₂O - Water
NaCl - Salt
Log₁₀ - Logarithm (base 10)
BWP - Bar Wrapped Pipe
EM - Electromagnetic
AFO - Acoustic Fibre Optic
PCCP - Pre-Stressed Concrete Cylinder Pipe
IQA - Image Quality Assessment
MOS - Mean Opinion Score
ECI - Element Condition Index
AI - Artificial Intelligence
TCP/IP - Transmission Control Protocol/Internet Protocol
ANN - Artificial Neural Network
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>PSNR</td>
<td>Peak Signal to Noise Ratio</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>NDT</td>
<td>Non-destructive Testing</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>PIGs</td>
<td>Pipeline Inspection Gauges</td>
</tr>
<tr>
<td>IP</td>
<td>Intelligent Pigs</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>RGB</td>
<td>Additive Colour Model in Which Red, Green, and Blue</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>ROV</td>
<td>Remotely Operated Vehicle</td>
</tr>
<tr>
<td>AUV</td>
<td>Automated Underwater Vehicle</td>
</tr>
<tr>
<td>NDE</td>
<td>Non-destructive Evaluation</td>
</tr>
<tr>
<td>CFA</td>
<td>Colour Filter Array</td>
</tr>
<tr>
<td>CASS</td>
<td>Cast Austenitic Stainless Steel</td>
</tr>
<tr>
<td>TOFD</td>
<td>Time-of-flight Diffraction</td>
</tr>
<tr>
<td>ET</td>
<td>Electromagnetic Testing</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Currents</td>
</tr>
<tr>
<td>GMR</td>
<td>Giant Magneto Resistive</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Boards</td>
</tr>
<tr>
<td>MFL</td>
<td>Magnetic Flux Leakage</td>
</tr>
<tr>
<td>ASNT</td>
<td>American Society for Non-destructive Testing</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimension</td>
</tr>
<tr>
<td>UI</td>
<td>User Interface</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

Journal

Publication

Chapter in Books

CHAPTER 1

INTRODUCTION

1.1 Background

An inspection is an organized detailed examination or evaluation exercise. An inspection activity involves the measurements, tests, and gauges applied to certain characteristics in regard to an object or activity (Chaturvedi, 2008). The results are compared to specified requirements or standards for determining whether the item or activity is in line with these targets. Corrosion inspection and monitoring are key activities in ensuring asset integrity and control of corrosion. Field information and the outcomes of research laboratory evaluations should be slanted to obtain up-to-date corrosion information. Corrosion inspection and monitoring includes assessment of (Davis, 2000):

- In-line systems cover installation of devices directly into the process.
- On-line monitoring includes deployment of corrosion monitoring directly
- Off-line monitoring is achieved through the use of NDT techniques

The costs of corrosion vary considerably from industry to industry. One of the industries that is highly impacted by corrosion is oil and gas industry. This is because, steel pipeline use to transfer medium oil and gas between places. However, steel pipe can corrode in service and may suffer degradation from defects. Therefore, the first step in any corrosion prevention program is to identify and quantify the present of corrosion (Davis, 2000).
In May 2013, in the City of Calgary, a deteriorated Bar Wrapped Pipe (BWP) due to corrosion was detected by Pure Technology during scheduled inspection (Pure Technology, 2013). Due to the pipe useful life is nearing the end, the pipe section was replaced. However, by replacing BWP earlier then its end life, the cost compare to the usage has increased. This can be avoided by using adequate inspection system that is able to detect earlier and suggest the prevention method to prolonged the pipe useful life. Another case of early detection occurrence is in 2012 when Tucson Water (2012) went into emergency mode when several wire breaks occurred in a short period of time on one of its 96-inch PCCP water transmission mains which indicates there was a high risk of failure. Tucson Water was able to react quickly to the wire breaks by reducing the pressure in the pipe and diverting the water from another main to serve its customers, subsequently preventing a failure. This is the second time it happens, with the first occurrence in 1999. After the first occurrence, Tucson Water has developed a pipeline management program inclusive of electromagnetic (EM) assessment (Groysman, 2009) and Acoustic Fibre Optic (AFO) monitoring (Maalej et al., 2004). Even if a catastrophe is avoided, should the system able to detect and at the same time suggest a solution, an emergency situation can be avoided.

There is a lot of different experiments and analysis methods used to identify corrosion damage for inspection and monitoring purposes. One of the methods is mechanical measurements by calculating weight loss, chemical analysis, and visual inspections. Corrosion occurs in several widely differing forms. Classification is usually based on one of three factors (Liang et al., 2010):

- **Nature of corrode**- Corrosion can be classified as “wet” or “dry”.
- **Mechanism of corrosion**- Involves electrochemical or direct chemical reactions.
- **Appearance of the corroded metal**- Either uniform (metal corrodes at the same rate over the entire surface, or localized which only small areas are affected).
Through using visual as corrosion inspections, the corrosion level identification requires an expert who can clearly determine the corrosion based on experience as well as types of corrosion, with red rust as a common experience. Usually, the corrosion process produces rough surfaces, and image analysis based on textural features can be used for quantification and discrimination of corrosion extent and type (Livens et al., 1996), (Pidaparti et al., 2013). Additional to textural features, colour progressions of metallic surfaces are also used for the detection of corrosion because of different metal oxides and other corrosion products (Medeiros et al., 2010).

With the abilities to classify corrosion based on the appearance of the corroded metal, this research work proposes a new approach on corrosion detection by using vision system as corrosion is either uniform and the metal corrodes at the same rate over the entire surface, or localized, in which case only small areas are affected. The detection of the corrosion “areas” is detected by means of visual sensor, using camera or video that is able to determine and analyse the sensed areas.

The proposed visual inspection system is to be implemented in a monitoring stage. During the monitoring, the visual inspection system would be able to gather data and at the same time process and analyse the collected data. With the results, the analysed data are able to be used to classify the corrosion type and also determine the actions to be taken.

Corrosion detection method using vision for a pipeline inspection system is able to improve current corrosion detection and reduce overall time for inspection. By using the images as the inspection data, the analogue signal loss due to the communication interference can be eliminated, as the image data are able to recover required features based on other features. Furthermore, the system is able to adapt to the unrefined environment, thus, making the proposed system robust and useful for other detection applications.