ANALYSIS AND CONTROL OF VIBRATION IN MACHINE TOOLS

This report is submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Robotics and Automation) (Hons.)

by

LIM KIM YEW
B051310101
930531-14-5235

FACULTY OF MANUFACTURING ENGINEERING
2017
Tajuk: ANALYSIS AND CONTROL OF VIBRATION IN MACHINE TOOLS

Sesi Pengajian: 2017 Semester 2

Saya LIM KIM YEW (930531-14-5235)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. *Sila tandakan (✓)

☐ SULIT (Mengandungi maklumat yang berdarah keselamatan atau kepentingan Malaysia, sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

✓ TIDAK TERHAD

Disahkan oleh:

[Signature]

Alamat Tetap:
13.06, Jalan 13/32,
Taman Jaya Baru,
52000 Kula Lumpur.

Tarihh: 22.06.2017

Cop Rasmi:

ASSOC PROF DR. Z AMBERI BIN JAMALUDIN
Faculty of Manufacturing Engineering
Universiti Teknikal Malaysia Melaka
Heng Tuan Jaya

Tarih: 22.06.2017

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkursus/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this report entitled “Analysis and Control of Vibration In Machine Tools” is the result of my own research except as cited in references.

Signature : ...
Author’s Name : LIM KIM YEW
Date : 22nd JUNE 2017
APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Robotics and Automation) (Hons). The members of the supervisory committee are as follows:

[Signature]

(Profesor Madya Dr Zamberi bin Jamaludin)

ASSOC. PROF. DR. ZAMBERI BIN JAMALUDIN
Faculty of Manufacturing Engineering
Universiti Teknikal Malaysia Melaka
Hang Tuah Jaya
ABSTRAK

The aim of this report is to analyze the characteristic of vibration on machine tools, to design a controller and an observer, and to validate the performance of control system. Precision and accuracy play important role in enhancing the performance and quality of the control system. However, vibration, is known as disturbance force that occur on machine tool can reduce the accuracy of the system. Hence, a compensator is required to design for mitigating the vibration effect to the system. In this project, a cascade P/PI controller and an inverse model based disturbance observer were chosen as compensator to control the vibration effect. Firstly, the behavior of the system was evaluated by finding its transfer function. Then, a cascade P/PI controller and disturbance observer were designed in MATLAB Simulink environment by applying the principle of traditional loop shaping method with taken into consideration on phase margin, gain margin, Nyquist diagram and bandwidth. Numerical analysis was carried out using MATLAB Simulink software. Two parameters were analyzed; disturbance rejection in root mean square tracking error and maximum amplitude of tracking error. The tracking performance of the control system was analyzed with and without input disturbances signals, then a comparison was made between them. A sinusoidal input reference was applied for this project. XYZ stage was used as positioning system whereas band limited white noise and cutting forces were utilized as emitting disturbance signal. To validate the performance of controller, an experimental analysis was conducted on the test setup. Based on the result obtained, a cascade P/PI controller with an add-on module, disturbance observer had reduced the disturbance efficiently by 21%. Further improvement was recommended by adding the speed feedforward to enhance the robustness of control system.
DEDICATION

Only
my beloved father, Lim Foo Lian
my appreciated mother, Chong Yuen Yee
my adored sister, Lim Mei Kee
for giving me moral support, money, cooperation, encouragement and also understandings
Thank You So Much & Love You All Forever
ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest appreciation to my respected supervisor, Profesor Madya Dr. Zamberi bin Jamaludin. His kindness, unwavering perseverance and mentorship supervised me, his teaching, explanations and positive thinking allowed me to grow and learn in such a way that I am now a better researcher. Furthermore, I would like to express my gratefulness to my beloved co-supervisor, Puan Nur Aidawaty binti Rafan for her supervision, advice and recommendations as well as exposing me with meaningful theories throughout the study and analyses.

Last but not least, I would like to give a special thanks to my best friends especially Chiew Tsung Heng, Madijah binti Haji Maharof, and Nur Amira Anang who gave me much encouragement, sincere advices and constructive suggestions in completing this report. I would like to extend my truthful thanks to all of them. Thanks for the great friendship.

Finally, I would like to sincerely thank my family members who gave me the moral motivation and spiritual support as well as expressing my sincerest apologies to all important person for my insensitive behaviours, words, disrespectful and embarrassment.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstrak</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Background of Study
1.2 Problem Statement
1.3 Objectives
1.4 Scope
1.5 Project Significance
1.6 Contents of Report

CHAPTER 2: LITERATURE REVIEW

2.1 Overview of Machining Process, Quality, and Issues
2.1.1 Overview of Milling Machine
2.2 Overview of Vibration
2.2.1 Definition of Vibration
2.2.2 Negative Effect Caused By Vibration
2.3 Causes of Vibration
2.3.1 Self-Excitation Mechanism
2.3.2 Rotating Machinery and Rotor Imbalance
2.4 Classifications of Vibration
 2.4.1 Linear and Non-linear Vibration
 2.4.2 Terminologies of Vibration
 2.4.3 Deterministic and Random Vibrations

2.5 Vibration Analysis
 2.5.1 Application of Mass-Spring-Damper Model
 2.5.2 Vibration Analysis Procedures
 2.5.3 Data Acquisition By Vibration Detectors

2.6 Vibration of Machine Tools Under Rotational Motion
 2.6.1 Torsional Vibration
 2.6.2 Lateral Vibration

2.7 Vibration Control
 2.7.1 PID Controller
 2.7.2 Cascade P/PI Controller
 2.7.3 Inverse Model Based Disturbance Observer
 2.7.4 Repetitive Controller

2.8 MATLAB
 2.8.1 MATLAB Simulink
 2.8.2 Tool for Interactive Simulation and Model-Based Design

2.9 Summary

CHAPTER 3: METHODOLOGY
3.1 Introduction
3.2 Project Implementation
3.3 Experimental Setup
 3.3.1 Software Simulation Tool
3.4 System Identification
3.5 Controller Design
3.6 Numerical Analysis
3.7 Experimental Analysis
3.8 Summary
CHAPTER 4: RESULTS & DISCUSSIONS

4.1 Controller Design

4.1.1 Design of Cascade P/PI Controller

4.1.1.1 Design of Velocity Loop and Loop Analysis

4.1.1.2 Design of Position Loop and Loop Analysis

4.2 Cascade P/PI Controller With Disturbance Observer

4.2.1 Design and Analysis of Observer’s Low Pass Q-filter

4.2.2 Design and Analysis of Velocity Loop With Disturbance Observer

4.2.3 Design and Analysis of Position Loop With Disturbance Observer

4.3 Validation of Controller’s Performance

4.3.1 Tracking Performance Without Input Disturbance

4.3.2 Tracking Performance With Input Disturbance

4.3.2.1 Tracking Error Using Band Limited White Noise As Input Disturbance

4.3.2.2 Tracking Error Using Measured Cutting Forces As Input Disturbance

4.4 Summary

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations

5.3 Sustainability

REFERENCES
APPENDICES

A Simulink Control Scheme of Cascade P/PI Controller With Disturbance Observer 88
LIST OF TABLES

2.1 Factors of vibration for each mode 22
2.2 Effect of vibration for each mode 23

3.1 Gantt chart 38
3.2 Model parameters 44
3.3 Parameters for cascade P/PI controller 46
3.4 Sample of simulated data collection table 48
3.5 Sample of experimental data collection table 49

4.1 Velocity loop controller parameters of x-axis 52
4.2 Gain margin and phase margin of x-axis velocity open loop 52
4.3 Gain margin and phase margin of x-axis position open loop 55
4.4 Transient response characteristics 57
4.5 Parameters of low pass Q-filter 59
4.6 Gain margin and phase margin of x-axis velocity open loop 60
4.7 Gain margin and phase margin of x-axis position open loop 63
4.8 Bandwidth of velocity loop and position loop 64
4.9 Simulated tracking error with sinusoidal input reference 65
4.10 Experimental tracking error with sinusoidal input reference 66
4.11 Experimental percentage error and friction reduction 67
4.12 Simulated tracking error of sinusoidal input reference with white noise 68
4.13 Experimental tracking error of sinusoidal input reference with white noise 69
4.14 Relationship between cutting forces and spindle speeds 70
4.15 Simulated tracking error of sinusoidal input reference with cutting forces 70
4.16 Simulated results of Fast Fourier Transform (FFT) 74
4.17 Simulated results of percentage error and friction reduction 74
4.18 Experimental tracking error of sinusoidal input reference with cutting forces 77
4.19 Experimental results of Fast Fourier Transform (FFT) 78
4.20 Experimental results of percentage error and friction reduction
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sinusoidal wave</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Average, RMS and peak of sinusoidal wave</td>
<td>13</td>
</tr>
<tr>
<td>2.3(a)</td>
<td>A deterministic (periodic) excitation</td>
<td>14</td>
</tr>
<tr>
<td>2.3(b)</td>
<td>A random excitation</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Mass-spring-damper model</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Displacement probe and signal conditioning system</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic diagram of velocity transducer</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic diagram of accelerometer</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic diagram of laser vibrometer</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Types of vibration</td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>Mechanical modeling of torsional vibration</td>
<td>24</td>
</tr>
<tr>
<td>2.11</td>
<td>Forward and backward whirling</td>
<td>26</td>
</tr>
<tr>
<td>2.12</td>
<td>PID controller</td>
<td>28</td>
</tr>
<tr>
<td>2.13</td>
<td>Scheme of cascade control structure</td>
<td>29</td>
</tr>
<tr>
<td>2.14</td>
<td>Ideal block diagram of cascade controller structure</td>
<td>29</td>
</tr>
<tr>
<td>2.15</td>
<td>Inverse model based disturbance observer</td>
<td>30</td>
</tr>
<tr>
<td>2.16</td>
<td>Configuration of basic repetitive control system</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of conducting overall project of FYP</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>XYZ stage</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Experimental setup of apparatus</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>Control structure diagram of XYZ stage</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Flowchart of conducting system identification process</td>
<td>42</td>
</tr>
<tr>
<td>3.6</td>
<td>Open loop system for FRF measurement</td>
<td>42</td>
</tr>
<tr>
<td>3.7</td>
<td>Flowchart of conversion procedures</td>
<td>43</td>
</tr>
<tr>
<td>3.8</td>
<td>Bode plot for FRF measurement, x-axis</td>
<td>45</td>
</tr>
<tr>
<td>3.9</td>
<td>Flowchart of designing a controller</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Control Scheme of cascade P/PI controller</td>
<td>51</td>
</tr>
</tbody>
</table>
4.2 Bode plot of velocity open loop transfer function

4.3 Nyquist plot of x-axis velocity open loop transfer function

4.4 Bode diagram of velocity closed loop transfer function

4.5 Bode plot of position open loop transfer function

4.6 Nyquist diagram of x-axis position open loop transfer function

4.7 Bode diagram of position closed loop transfer function

4.8 Step response of position closed loop transfer function

4.9 Magnitude plot of Bode diagram of Q-filter

4.10 Velocity open loop transfer function with IMBDO

4.11 Nyquist diagram of velocity open loop with and without IMBDO

4.12 Bode diagram of velocity closed loop with and without IMBDO

4.13 Position open loop transfer function with IMBDO

4.14 Nyquist diagram of position open loop with and without IMBDO

4.15 Bode diagram of position closed loop with and without IMBDO

4.16 Simulated tracking error with sinusoidal input reference

4.17 Experimental tracking error with sinusoidal input reference

4.18 Simulated tracking error for sinusoidal input reference with white noise

4.19 Experimental tracking error for sinusoidal input reference with white noise

4.20 Simulated tracking error for sinusoidal input reference with 1500 rpm

4.21 Simulated tracking error for sinusoidal input reference with 2500 rpm

4.22 Simulated tracking error for sinusoidal input reference with 3500 rpm

4.23 Experimental tracking error for sinusoidal input reference with 1500 rpm

4.24 Experimental tracking error for sinusoidal input reference with 2500 rpm

4.25 Experimental tracking error for sinusoidal input reference with 3500 rpm

5.1 H-infinity
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American society for testing and materials</td>
</tr>
<tr>
<td>DAC</td>
<td>Data acquisition unit</td>
</tr>
<tr>
<td>FRF</td>
<td>Frequency Response Function</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>IMBDO</td>
<td>Inverse Model Based Disturbance Observer</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional-Integral-Derivative</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional-Integral</td>
</tr>
<tr>
<td>P</td>
<td>Proportional</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>-</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>-</td>
<td>Millimetre</td>
</tr>
<tr>
<td>vpm</td>
<td>-</td>
<td>Vibration per minute</td>
</tr>
<tr>
<td>N</td>
<td>-</td>
<td>Newton</td>
</tr>
<tr>
<td>Hz</td>
<td>-</td>
<td>Hertz</td>
</tr>
<tr>
<td>$^\circ$</td>
<td>-</td>
<td>Degree</td>
</tr>
<tr>
<td>dB</td>
<td>-</td>
<td>Decibel</td>
</tr>
<tr>
<td>m</td>
<td>-</td>
<td>Order of numerator</td>
</tr>
<tr>
<td>n</td>
<td>-</td>
<td>Order of denominator</td>
</tr>
<tr>
<td>w_c</td>
<td>-</td>
<td>Cut off frequency</td>
</tr>
<tr>
<td>rpm</td>
<td>-</td>
<td>Revolution per minute</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

This research is about the study and analysis of the vibration control of a milling machine where the machine tool is under rotational motion. Milling process normally leads to many types of vibration troubles. The research will demonstrate the understanding of the vibration troubles and how to minimize it.

1.1 Background of Study

Machine tool vibration basically is considered as undesirable phenomena. This undesirable vibration causes a huge problem in the manufacturing industry. Vibration occurs due to the excitation that appear on the material deformation and distortion. Sometimes, the long and slim drill bit is generally required to pre-drill hole as a marking on a work sample, thus totally contribute extra sensitive to the vibration. These vibrations will bring to some adverse effect such as low dimensional accuracy, poor surface finish of the work samples, undesirable noise, and most critically shorten the machine tool life.

Due to its critical effect to the machine tool, the vibration has been studied widely by some previous researchers to find out the preventive measures to mitigate vibration caused by the rotary machine tool. Tobias (1965) studied the unstable state of metal cutting process. The theory considered by Merchant (1944) was that the cutting force is directly proportional
to the depth of cut. According to Nigm et al. (1977), dimensional analysis of orthogonal cutting under steady cutting state can be applied in modeling the cutting process. Furthermore, Minis et al. (1990) obtained the cutting transfer function by referring to the dynamic cutting force model in which the transfer function can be used to predict vibration in turning process.

1.2 Problem Statement

The typical rotational machine tools used in the milling machine can cause three types of vibration which are axial, lateral, and torsional. Axial vibration occurs along the length of machine tool. Lateral vibration occurs due to unbalance force and instability acting the drill bit. Torsional vibration occurs due to non-linear load applied on the drill bit. The performance of system is controlled by several external factors which include voltage variation and input cutting forces. Thus, a position compensator and an observer are required to design for rejecting the vibration disturbance due to the machining effect. A good design compensator and an observer were very important to ensure good tracking performance.

1.3 Objectives

The objectives of this project are as follow:

i. To analyze the vibration characteristics in machine tools.

ii. To design a controller and an observer to mitigate the vibration effect on machine tools.

iii. To validate the performance of the control system.
1.4 Scopes

The scopes of this project are as follow:

i. A XYZ feed table milling machine is used as positioning system.
ii. Vibration is occurred due to the interaction of machine tool and workpiece during cutting process.
iii. The control system consists of a cascade P/PI controller and an Inverse Model Based Disturbance Observer.
iv. MATLAB and Simulink software are used for control design and performance analysis.
v. Control performance analysis was based on transient response and frequency response characteristics.

1.5 Project Significance

This project plays a significant role in analyzing the vibration caused to machine tool. Firstly, vibration is identified as a critical problem to manufacturing industry. The root causes of vibration are studied and investigated. Once the causes are discovered, several alternatives and preventive measures are proposed to suppress the vibrations. Then, the most effective measure is selected to apply in this project. Next, the selected measure is then executed and implemented by designing a controller and an observer. Finally, the vibration absorber device is monitored regularly to reduce the vibration disturbance that came from the machining effect.
1.6 Contents of Report

This report is comprised of five chapters. Chapter one has been discussed as section above. Chapter two discussed the literature review of project based on previous researchers. It included the theories of vibration characteristics, causes and types of vibration, and the vibration control methods. The methods involved to collect the data and graphical presentation are covered in Chapter three. This is followed by the result and discussion in Chapter four which includes data presentation and tabulation, results interpretation, and discussion on vibration characteristics and how to control the vibration of machine tools. Finally, the conclusion and recommendations for future improvement are stated in Chapter five.
CHAPTER 2
LITERATURE REVIEW

This chapter relates information on vibration study and analysis in machine tools applications under rotational motion condition. The key topics covered in this chapter includes the overview of machining process, quality, and issues, fundamental of vibration, classifications, and terminologies of vibration, causes of vibration, vibration analysis, vibration of machine tools under rotational motion, vibration control, MATLAB Simulink, and summary.

2.1 Overview of Machining Process, Quality, and Issues

In recent decade, those technologies that applied in machining process have improved rapidly and widely. For example, numerical control is incorporated to enhance the computer monitoring system. Every year in the market, the ability of producing a new product has increased because the development of new ideas, concepts, tooling, materials, and manufacturing devices. Different machining processes have different demand. The increasing demand of market year by year, the accuracy, performance and flexibility are improved constantly to highest rate with creative and innovative solutions. Hence, all these enhancements greatly depend on the generation of precious knowledge and experiences.
Besides that, the milling fundamental must be understood first, then proceed to conduct machining process. But this is a very difficult task because the complicated of chip formation mechanism. According to recent trend, the computers and sensors are widely used and being focused on the managing, controlling, planning and monitoring of the machining process. The diagnosis aspects like surface finish, dimensional accuracy, productivity, and identification of vibrations can be conducted by the development of sensors and signal processing skills. The manufacturing border has expanded due to the enhancement of science, technology, manufacturing skills and the pressure from high competitive market (Quintana and Ciurana, 2011).

2.1.1 Overview of Milling Machine

Milling is defined as the machining process of applying rotary cutting tool to shape the solid materials by feeding in a direction at an angle with the cutting tool axis. Milling machine includes diverse of operations such as boring, turning, surface finishing and so on. It is very popular applied processes in manufacturing industry today for shaping parts into desired size.

Meanwhile, the movements of cutting tool are normally perpendicular to the axis. As the machine tool enters the workpiece, the edge of cutter cut into and exit from the workpiece, chips are produced with each pass. Therefore, it removes the material with many separate and small cuts by spinning the machine tool in high speed or controlling the workpiece carefully and slowly.

Furthermore, cutter is very important in machining process. There are many types of tools that used in milling machine. The cutting surface of cutting tool is made of rigid and high temperature resistant material. The high speed steel is a manufacturing material for low cost cutting tools whereas the cemented carbide is for high cost cutting tool. Thin film will coat on the cutter to decrease friction and increase the hardness as well (Usher and John, 1896).

Despite of how perfect the operations and functions of milling machine, however, vibration is appeared as a limitation to enhance the productivity, dimensional accuracy, and product quality. This issue has been a controversial and common topic that needs to research and investigate. This project focuses on compensating effects of vibration in machine tools.