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ABSTRACT 
 

 
 
 
 
 

Osteoarthritis (OA) is a major health issues among the population, causing pain in the 

human joints. It is well recognised that the OA is mainly caused by the degeneration of 

articular cartilage. The earliest stage of OA resulted in the alteration of the biomechanical 

properties of cartilage elastic modulus and permeability. Hence, the ability to detect the 

disease at its earliest stage is crucial for early intervention of the disease. MRI technique is 

widely used to assess the condition of the articular cartilage by examining the geometrical 

data. However, most of the diagnoses were performed at the progressive stage of 

osteoarthritis. Furthermore, most of the previous works and current clinical procedures 

were performed using high-field MRI which require significant purchase and maintenance 

costs. Therefore, this study aimed to investigate the potential application of low-field MRI 

image  in  order  to  examine  the  condition  of  articular  cartilage.  Cartilage  specimens 

obtained from the humeral head of bovine were scanned using 0.18 T MRI. It was found 

that the gradient echo sequence of the low-field MRI was the most suitable sequence to 

image the cartilage. The images of cartilage were characterised based on the intensity of 

the greyscale. Creep indentation test was then conducted on the cartilage specimens and 

subsequently the indentation test was simulated using finite element method. The 

biomechanical properties of cartilage elastic modulus and permeability were characterised 

by integrating the experimental indentation test data and computational finite element 

model.  The  average  elastic  modulus  was  found  to  be  0.93  ±  0.72  MPa  while  the 

permeability  was  0.58  ±  0.31  ×10
-15

m
4
/Ns.  Correlation  analyses  were  performed  to 

examine  the  relationship  between  the  greyscale  of  MRI  image  and  biomechanical 

properties of elastic modulus and permeability of the cartilage. It was found that the 

cartilage greyscale  was  moderately correlated with  cartilage biphasic elastic  modulus 

(r= 0. 513) and higher correlation was observed with the permeability (r= 0.613). Thus, 

present results indicate that the low-field MRI have the potential and provide promising 

insight to determine the condition of articular cartilage. It could be further develop to serve 

as an early intervention of OA disease. 
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ABSTRAK 
 

 
 
 
 
 

Osteoartritis dikenalpasti sebagai salah satu isu kesihatan yang menyebabkan kesakitan 

pada sendi manusia. Degenerasi tulang rawan artikular dikenalpasti sebagai punca utama 

osteoartritis. Pada peringkat awal osteoarthritis, ciri-ciri biomekanikal elastik dan 

kebolehtelapan tulang rawan akan mengalami perubahan. Kajian mendalam mengenai 

tulang rawan telah banyak dijalankan semasa perubahan patologi pada tisu rawan. Oleh 

itu, keupayaan untuk mengesan osteoartritis pada peringkat awal adalah penting untuk 

intervensi awal bagi rawatan penyakit ini. Kaedah pengimbas pengimejan resonans 

magnetik  digunakan  secara  meluas  untuk  mengkaji  keadaan  tulang  rawan  artikular 

melalui pemeriksaan data geometri. Walau bagaimanapun, diagnosis ini biasa dijalankan 

pada peringkat perkembangan osteoartritis. Kebanyakan kajian lanjutan terdahulu dan 

prosedur klinikal semasa telah dijalankan dengan mengaplikasikan medan pengimejan 

resonans magnetik berkekuatan tinggi yang memerlukan kos pembelian dan 

penyelenggaraan yang tinggi. Oleh itu, kajian ini bertujuan untuk mengkaji potensi 

pengimejan resonans magnetik berkekuatan rendah dalam pemeriksaan keadaan tulang 

rawan. Tulang rawan daripada humerus sendi bahu lembu telah digunakan untuk 

pengimejan dengan mengaplikasikan medan pengimejan resonans magnetik yang 

berkekuatan serendah 0.18 T. Di dalam kajian ini, didapati urutan gema kecerunan adalah 

urutan  yang  paling  sesuai  dalam  pengimejan resonans  magnetik berkekuatan rendah 

untuk  mengkaji  tulang  rawan.  Imej  tulang  rawan  ini  kemudian  dicirikan  mengikut 

keamatan skala kelabu. Ujian lekukan dijalankan untuk mendapatkan data daripada 

eksperimen dan model unsur tak terhingga telah dibangunkan daripada pengukuran 

geometri tulang rawan. Kajian mengkaji ciri-ciri biomekanikal tulang rawan dilakukan 

dengan mengintegrasi data eksperimen ujian lekukan dan pengkomputeran unsur tak 

terhingga. Nilai purata elastik modulus tulang rawan adalah 0.93 ± 0.72 MPa manakala 

purata untuk kebolehterapan adalah 0.58  ± 0.31 ×10
-15

m
4
/Ns. Analisis korelasi telah 

dikaji untuk mengenalpasti hubungan antara skala kelabu dan sifat biomekanikal modulus 

elastik dan kebolehtelapan tulang rawan. Berdasarkan hasil kajian, skala kelabu tulang 

rawan  menunjukkan  hubungan   sederhana  dengan   modulus  elastik  (r=0.513)   dan 

hubungan yang lebih tinggi diperhatikan pada kebolehtelapan (r=0.613). Hasil dari kajian 

ini menunjukkan pengimejan resonans magnetik yang berkekuatan rendah berpontensi 

untuk menentukan keadaan tulang rawan artikular. Pendekatan ini boleh dikaji secara 

mendalam bagi memberi panduan kepada intervensi rawatan yang awal dalam bidang 

penyelidikan penyakit osteoarthritis. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 

 
 

1.1 Project Background 

 
Osteoarthritis (OA) is one of the degenerative arthritis joint disorder that is most 

prevalent in knee, hips, and spine and it is one of the major health issue. It causes joint pain 

and stiffness. OA patients will have limitations in movement, cannot perform their major 

daily activities, and require help with care. It is estimated that 5.93% of the total population 

in Malaysia will develop osteoarthritis (Raj et al., 2016, 2014). The World Health 

Organisation (WHO) estimates that 9.6% of men and 18 % of women aged above 60 years 

old have affected by symptomatic OA (United Nations, 2015; Thysen et al., 2015; Leung 

et al., 2013). As the ageing population of the developed country increases, the prevalence 

of OA is expected to accelerate from 2015 to 2050 due to the proportion of the world’s 

populations over 60 years has increased substantially. 

OA is mainly caused by the deterioration of articular cartilage and affected the 

biomechanical properties of the articular cartilage at the early stage (Hani et al., 2015; 

Szarko et al., 2010; Knecht et al., 2006). Deterioration of cartilage is caused by wear or 

tear in the joint. It is most likely associated with ageing where it reduces the hydration of 

cartilage and affected the articular cartilage that have been continually stressed throughout 

the years to become thin and thus lead to the disease. Damaged cartilage become porous 

and high in permeability and leads to the decreased of modulud of elasticity and reduction 

in load bearing capacity (Grenier et al., 2014; Bhosale and Richardson, 2008). Due to the 

limited regenerative capacity of the articular cartilage, cartilage tissues repair remains a 

challenging task. Conseqeuntly, preventive strategies are yet to be identified to treat the 
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disease since the current prescriptions to modify or decelerate the disease are limited. In 

addition, non-surgical treatments for OA have limited efficacy partly due to the late 

detection of the structural deterioration of the disease (Favero et al., 2015). Therefore, in 

the final stage of the disease, most of the severe patient will undergo joint replacement 

surgery (Wang et al., 2012). Thus, the ability to diagnose the disease at its earliest stage is 

crucial because the treatment often depends on the early detection in the symptomatic OA 

disease. 

Therefore, early detection of OA had caused great interest to researchers, 

radiologists,  and  orthopaedists.  Nowadays,  more  than  one  measurement  element  of 

articular cartilage changes is needed to enhance the ability of the early symptoms of 

osteoarthritis. These include the alteration of cartilage composition components such as 

water content and proteoglycan content in cartilage and further examination on cartilage 

morphological components such as thickness and volume using imaging modalities (Hani 

et al., 2015; Liess et al., 2002). 

Articular cartilage is only a few millimetres thick and possesses an irregular shape 

that make the detection of the minor changes in the early degeneration of the disease more 

challenging (Hani et al., 2015). Due to this, articular cartilage does not heal by itself under 

biological situation (Bergmann et al., 2013). The current gold standard for the early 

identification to assess the articular cartilage and diagnose the evolution of OA is based on 

medical imaging modalities such as computed tomography (CT) scan, X-ray, arthoscopy, 

ultrasound (US) and magnetic resonance imaging (MRI). 

In recent decades, MRI has become the significant non-invasive imaging modality 

to examine the joint as a measure of the OA disease and assess the pathologic changes in 

bone and tissues especially articular cartilage (Fornari et al., 2015; Nissi et al., 2004). MRI 

is widely used to detect the osteoarthritis feature because it produces a high sensitivity of 
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contrast image in detecting intra-articular structures compare to others imaging modalities 

 
(Fornari et al., 2015; Kumar et al., 2011; Blumenkrantz and Majumdar, 2007; Liess et al., 

 
2002). Research results had indicated that MRI is the most promising imaging modality 

because MRI enables quantitative assessment to measure volume and thickness of cartilage 

and semiquantitative assessment to examine the composition of (Hani et al., 2015; Wang et 

al., 2012). High-field MRI was normally used in previous studies to detemine the cartilage 

biomechanical properties based on the quantitative information from MRI images (Nissi et 

al., 2007; Nieminen et al., 2004; Wayne et al., 2003; Liess et al., 2002). Previous studies 

have reported that the diagnostic performance between high-field (1.5 T) and low-field (0.2 

T) MRI showed equally well on the knee joint (Cotten et al., 2000). Figure 1.1 shows the 

images on the knee meniscal injuries appearance obtained from both high and low-field 

MRI. Therefore, in the present work, the aim is to investigate the potential application of 

low-field MRI image in examining the condition of cartilage as early intervention of OA 

disease. 
 
 
 

 
(a) (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. 1 MRI images (a) 1.5 T MRI and (b) 0.2 T MRI show equally diagnostic 

performance on the meniscal injuries (arrow). Adapted from Cotten et al., 2010 




