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The authors

propose a

two-stage

nonparametric

no-reference image

quality assessment

framework that can

predict the image

distortion type as

well as the quality

of local regions.

The framework

correlates well with

human perception

of image quality.

A
s multimedia and visual technolo-

gies have continued to advance in

recent years, digital images have

become ever more ubiquitous. Sub-

sequently, a huge number of publicly available

digital images have led to a surge of interest in

the image processing and computer vision

research areas. One particular area that has

received significant research attention is image

quality assessment (IQA). While subjective IQA

measures are generally agreed to be the most reli-

able way to assess perceptual image quality, the

fact that they are carried out by human observers

makes them expensive and time-consuming. As

such, an algorithm that can automatically pro-

vide an image quality measurement that is con-

sistent with human perceptual measures is

highly desired.

Objective IQA algorithms can generally be

categorized into two main classes: full-reference

(FR) and no-reference (NR). In the FR-IQA cate-

gory, the quality of a distorted image is eval-

uated by comparing the entire information

difference between the image and its corre-

sponding undistorted reference image. Mean

squared error and peak signal-to-noise ratio

(PSNR) are the simplest metrics to be imple-

mented in this case. However, they have poor

correlation with subjective quality measures.

This has resulted in many other FR-IQA algo-

rithms being developed where image quality is

estimated based on various mechanisms such

as the human visual system, image structure, or

image statistics. SSIM1 and FSIM2 are examples

of established high-performance FR-IQA algo-

rithms that achieve high correlation with sub-

jective IQA. However, in many situations, full

information on the reference image is not

available. For example, in photo and film resto-

ration applications, it is possible that a

degraded print is the only available record of a

photo or a film. In such cases, an NR-IQA algo-

rithm is preferred.

Rather than discovering suitable quality-

predictive features, which have been inten-

sively researched using parametric algorithms,

our work attempts to look at an alternative

framework to perform the NR-IQA task without

having to undergo any training process. Follow-

ing the feature extraction process, we propose a

two-stage nonparametric NR-IQA framework.

Our framework design is based on the observa-

tion that parametric NR-IQA algorithms are

sensitive to different databases.3 Once they are

trained on one database, most of the algorithms

would perform poorly when tested on another

database, because they contain database-

specific parameters. Considering that nonpara-

metric models are more flexible and make fewer

assumptions than their parametric counter-

parts, using a nonparametric framework should

yield better performance across different data-

bases. In addition, previous work4 also indicates

that the distribution of human differential

mean opinion score (DMOS) values varies

greatly between different distortion classes.

Therefore, the introduction of a distortion iden-

tification stage in our framework should lead to

a better selection of relevant training (labeled)

samples to be used in predicting the quality of

the test image.

This work is an extension of our previous

work,5 where we conducted experiments on a

single IQA database and included only initial

experimental results. For this article, we con-

ducted further testing to fully show the poten-

tial of using the nonparametric approach to

perform NR-IQA. Experimental results on the

standard IQA databases demonstrate that the

proposed algorithm achieves high correlation

with human perceptual measures of image
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quality and provides comparable performance

with state-of-the-art non-distortion-specific

(NDS) NR-IQA algorithms.

Current NR-IQA Algorithms
Present NR-IQA algorithms can be classified

into two major categories:6 distortion-specific

(DS) and NDS. In DS cases, the distortion type

contained in an image is assumed to be known

beforehand. A specific distortion model is then

employed to estimate image quality. However,

these DS algorithms can be employed only in

specific application domains due to this

assumption. Meanwhile, NDS NR-IQA algo-

rithms require no prior knowledge of the type

of distortion affecting the image. Instead, the

image quality score is obtained based on an

assumption that the image has similar distor-

tion to images in the standard IQA databases.

Using the database image examples, whose

human DMOSs or human mean opinion scores

(MOSs) are provided, these NDS algorithms are

then trained to predict the quality of a given

image.

A two-stage framework is usually employed

when designing these algorithms: feature extrac-

tion followed by learning a regression model

from human perceptual measures of training

images. In the first stage, the extracted quality-

predictive features can be either handcrafted or

determined via machine learning approaches.

Most of the handcrafted quality-predictive fea-

tures designed for the NDS NR-IQA task are

based on natural scene statistical (NSS) proper-

ties. Some NSS-based algorithms had their fea-

tures derived in image transformation domains,

such as BIQI,7 DIIVINE,8 and NSS-GS/NSS-TS9 in

the wavelet domain and BLIINDS-II10 in the dis-

crete cosine transform (DCT) domain. To reduce

expensive computational costs due to the image

transformation procedure, other NSS-based algo-

rithms used features that were extracted in the

spatial domain. A well-known example of this

approach is BRISQUE.11

The NSS-based algorithms can also be differ-

entiated by their types of quality-predictive fea-

tures. For example, statistical properties of

distortion textures, natural image, and blur/

noise are used to derive the features for LBIQ.12

The GMLOG algorithm (explained in detail

later) extracts features based on statistical prop-

erties of local contrast features.4 In addition,

the magnitude, variance, and entropy of the

wavelet coefficients are utilized to design the

features for the SRNSS algorithm.3 Meanwhile,

other algorithms involve features being learned

directly from raw image pixels. This approach

was first presented by CORNIA (the Codebook

Representation for No-Reference Image Assess-

ment),13 and its success has led to the introduc-

tion of another algorithm that uses

convolutional neural networks (CNN).14 The

extracted features are then used to learn the

mapping between the feature space and the

image quality through a regression algorithm.

Kernel-based learning methods are used in

most cases—in particular, support vector

machine (SVM) and support vector regression

(SVR) with linear/radial basis functions. In this

case, all these NDS NR-IQA algorithms can be

referred to as parametric methods.

Our Proposed Framework
Our proposed nonparametric IQA framework is

illustrated in Figure 1. It consists of five major

components: local feature extraction, labeled

dataset construction, distortion identification,

local (patch-level) quality estimation, and pool-

ing for overall (image-level) quality estimation.

Local Feature Extraction

Because the features are extracted from local

image patches instead of from a whole image, it

is essential to use quality-predictive features that

have low computational requirements. As such,

we chose to use features from the spatial domain

that alleviate expensive computation encoun-

tered by image-transform-based features. In this

Test image

Labelled images
Patch extraction

Patch extraction

Local quality
estimation
(regression)

Global quality
estimation
(pooling)  

Feature
extraction

Feature
extraction

Q
Distortion

identification 
(classification)

Labelled dataset

Figure 1. The proposed no-reference image quality assessment (NR-IQA)

framework. In addition to estimating the image quality, the framework can

also identify image distortion.
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work, we have adopted two local spatial contrast

features, gradient magnitude (GM) and Lapla-

cian of Gaussian (LOG), to perform the NR-IQA

task. This is based on the observation that they

can characterize image semantic structures such

as edges and corners, which in turn are closely

related to human perception of image quality.

Thus, we chose four joint statistical properties of

these features (as implemented elsewhere4) as

the quality-predictive features to be extracted

from the images.

Specifically, the GM map of an image I can

be computed as

GI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½I� hx�2 þ ½I� hy�2

q
;

where hx and hy are the Gaussian partial deriva-

tive filters applied along horizontal and vertical

directions respectively. Meanwhile, the LOG of

the image is given by

LI ¼ I� hLOG

hLOGðx; yjrÞ ¼
@2

@x2
gðx; yjrÞ þ @

@y2
gðx; yjrÞ;

where gðx; yjrÞ is the isotropic Gaussian func-

tion with scale parameter r. The computed GM

and LOG operators are then normalized to

achieve stable statistical image representations:

�GI ¼
GI

ðNI þ eÞ ;
�LI ¼

LI

ðNI þ eÞ : (1)

The locally adaptive normalization factor NI in

Equation 1 is computed at each location ði; jÞ as

NIði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXX

ðl;kÞ2Xi;j
xðl; kÞF2

I ðl; kÞ
r

;

where Xi;j is a local window centered at

ði; jÞ; xðl; kÞ are weights, and FIði; jÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

I ði; jÞ þ L2
I ði; jÞ

q
.

The marginal probability functions of the

jointly normalized GM and LOG operators,

denoted by P�GI
and P�LI

respectively, are then

computed and selected as the first two quality-

predictive features:

P�GI
ð�GI ¼ gmÞ ¼

XN

n¼1
Km;n; P�LI

ð�LI ¼ lnÞ

¼
XM

m¼1
Km;n;

where Km;n ¼ Pð�GI ¼ gm; �LI ¼ lnÞ is the joint

empirical probability function of �GI and �LI,

while m ¼ 1; …; M and n ¼ 1; …; N are the

quantization levels of �GI and �LI.

Considering the fact that there are depend-

encies between the GM and LOG features, the

two remaining quality-predictive features,

known as independency distributions, are then

computed. They can be represented as

Q�GI
ð�GI ¼ gmÞ ¼

1

N

XN

n¼1
Pð�GI ¼ gmj�LI ¼ lnÞ

Q�LI
ð�LI ¼ lnÞ ¼

1

M

XM

m¼1
Pð�LI ¼ lnj�GI ¼ gmÞ:

These four quality-predictive features are

then combined to produce the final GMLOG

feature vector for an image:

GMLOGI ¼ ½P�GI
;P�LI

;Q�GI
;Q�LI
�:

Labeled Dataset Construction

Considering that most parametric NR-IQA algo-

rithms use 80:20 train-test ratios to train their

regression models, we follow the same strategy

to construct the labeled dataset. In other words,

the dataset is constructed based on 80 percent

of the randomly sampled reference images and

their associated distorted images from a selected

standard IQA database. To this end, let the total

number of images in the labeled dataset be

denoted as LT . Given one labeled image, it is

first divided into L nonoverlapped patches of

B� B size. The GMLOG feature vector is

extracted from each of these patches. They are

then combined over all labeled images to form

the dataset. Consequently, we can represent the

size of the feature matrix GMLOGD of the data-

set as

GMLOGD ¼
��XLT

i¼1
Li

�
� 4M

�
:

In the dataset, two different labels are pro-

vided for those selected patches. The first label

is the distortion class. Each patch is assigned a

label of the distortion type that is affecting its

associated source image. The second label is the

DMOS where each patch is assigned with its

corresponding source images’ DMOS. Although

We have adopted two

local spatial contrast

features, gradient

magnitude and Laplacian

of Gaussian, to perform

the NR-IQA task.
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this assignment might be questionable, it is

acceptable in this case because the distortion

level is uniform across the image. An example

of this dataset construction on one reference

image and its associated distorted images is

shown in Figure 2.

Image Distortion Identification

The next stage is to identify (classify) the distor-

tion class of the test image. Prior to this, a test

image Y is first partitioned into P nonover-

lapped patches yi. The GMLOG feature vector

GMLOGyi
is then computed for each yi,

i ¼ 1; 2; …; P, before being combined to form

the test image feature matrix GMLOGY.

In nonparametric classification, it has been

shown that under the Na€ıve-Bayes assumption,

the optimal distance to be used is the image-to-

class (I2C) distance rather than the typically

used image-to-image distance. Thus, we have

adopted the Na€ıve-Bayes Nearest Neighbor

(NN) algorithm15 to design the nonparametric

classifier in this work.

Based on this algorithm, the predicted class

for the test image is found as

Cp ¼ argminCjjGMLOGY

�NNCðGMLOGYÞjj2;

where NNC (GMLOGY) is the NN-descriptor of

GMLOGY in the distortion class C.

Local Quality Estimation

Once we determine the distortion type affect-

ing the test image, we then use the labeled

patches within the identified class to estimate

the quality of the test image patches. In this

work, we employ a typical k-NN regression

algorithm. First, we compute the Euclidean

distance between the test patch and the

labeled patches. Then we rearrange the labeled

patches in ascending order according to the

computed distances. We then empirically

choose the first K nearest labeled patches to

estimate the test patch quality score. At this

point, rather than using a common inverse

distance weighting scheme where the selected

patches are assigned weights according to the

inverse of their computed distances, we esti-

mate the quality score of the test patch

through a simple linear regression. In this

case, the predicted score is

Qyi
¼ wðGMLOGyi

Þ;

where w is the optimized weights for the test

patch feature vector.

Global Quality Estimation

We can then infer the image-level quality of the

test image. In this work, rather than using a

simple average pooling, we employ an inverse

distance weighting rule where each predicted

local score is assigned a weight based on the

minimum Euclidean distance di computed in

the previous local quality estimation stage. As

such, the global quality score for the test image

Y is given as

QY ¼

XP

i¼1
wiQyiXP

i¼1
wi

;

where

wi ¼
�XP

i¼1
di

��
di:

Experiments and Discussion
In this section, we present the experiments,

evaluate the performance, and discuss the prop-

erties of our algorithm.

Protocols

The performance of an NR-IQA algorithm is

usually evaluated using subjective image data-

bases. There are several established subjective

image evaluation databases within the IQA

research area. For this work, we used two pub-

licly available databases, LIVE16 (developed by

the Laboratory for Image & Video Engineering

Reference White noise JPEG2000 JPEG Gauss.blur Fast fading

Patch extraction

Feature extraction

∑

Figure 2. An example of dataset construction based on one reference image

and its distorted versions. The dataset consists of feature vectors extracted

from patches of labeled images.
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at the University of Texas at Austin) and CSIQ17

(developed by the Laboratory of Computa-

tional and Subjective Image Quality at Shizuoka

University). The LIVE database is probably the

most widely used database for evaluating the

performance of IQA algorithms. It consists of

29 undistorted reference images. Each of these

reference images is then subjected to five or six

degradation levels in five different distortion

types: JPEG2000 compression (JP2K), JPEG

compression (JPEG), additive white noise

(WN), Gaussian blur (GB), and simulated fast

fading channel (FF), yielding a total of 779 dis-

torted images. These distorted images are pro-

vided with DMOS values in the range between

0 and 100. Meanwhile, the CSIQ database com-

prises 866 distorted images. They are generated

when a total of six different types of distortions

are applied to 30 reference images at four or five

levels. In contrast to the LIVE database, each

distorted image is assigned a DMOS value

between 0 and 1. In both databases, an image

with a lower distortion level is assigned with a

lower DMOS value.

The scale parameter r is set at 0.5, while the

quantization level M ¼ N is set at 10.4 The

patch size B and the number of NN labeled

patches K are empirically set at 96 and 1,000,

respectively.

The performance of the NR-IQA algorithms

is measured by their ability to predict image

quality as close as possible to human visual sys-

tem performance. These algorithms commonly

use two metrics that measure the consistency

between the predicted quality score of the

image and its corresponding DMOS/MOS: the

Spearman rank order correlation coefficient

(SROCC) and the linear correlation coefficient

(LCC). The SROCC is used to represent algo-

rithm prediction monotonicity, while the LCC

is used to evaluate the prediction accuracy of

the algorithm. For both SROCC and LCC met-

rics, a correlation score that is close to 1 (or �1)

indicates good performance by the algorithm.

Evaluation on LIVE Database

We compared our proposed algorithm to three

FR-IQA algorithms: PSNR, SSIM,1 and FSIM.2 We

also chose six recent NDS NR-IQA algorithms for

comparison, where their codes are publicly

available. The six algorithms chosen were Blind

Image Quality Indices (BIQI),7 Distortion Identi-

fication-based Image Verity and INtegrity Evalu-

ation (DIIVINE),8 Blind Image Integrity notator

using DCT Statistics-II (BLIINDS-II),10 Blind/

Referenceless Image Spatial QUality Evaluator

(BRISQUE),11 Gradient Magnitude and Lapla-

cian of Gaussian (GMLOG),4 and CORNIA.13

These algorithms’ databases are partitioned into

two parts: 80 percent of the reference images

and their distorted versions are randomly

selected as a training set, and the remaining 20

percent is for testing, thus ensuring there is no

overlap. In our case, we used the same training

set to construct the required labeled dataset, and

we used LIBSVM18 to perform regression for

these algorithms. For a fair comparison, we

determined their respective regression parame-

ters through cross-validation in accordance with

their published research papers.

We conducted two experiments: an NDS

experiment and a DS experiment. In the NDS

experiment, we performed the train-test

(labeled-test, in our research) run across all dis-

torted images regardless of their distortions. In

the DS experiment, we conducted the run on a

single type of distortion to evaluate how well

the algorithm performs in one particular distor-

tion. We repeated the train-test procedure 1,000

times; the median results are reported in Tables

1 and 2. For brevity, Table 2 shows only the

SROCC results for the DS experiment. Similar

conclusions can be made for LCC results. The

top three NR-IQA algorithms are highlighted in

bold.

For the NDS experiment, our framework

clearly outperforms BIQI, DIIVINE, and

BLIINDS-II when tested on both the LIVE and

CSIQ databases. In addition, it also achieves

similar performance as BRISQUE and CORNIA

Table 1. Overall performance for the non-distortion-specific experiment.

(The top three NR-IQA algorithms appear in bold.)

Algorithm

LIVE CSIQ

SROCC LCC SROCC LCC

PSNR 0.8659 0.8561 0.9292 0.8562

SSIM 0.9126 0.9064 0.9362 0.9347

FSIM 0.9639 0.9602 0.9629 0.9675

BIQI 0.8204 0.8200 0.7598 0.8353

DIIVINE 0.9156 0.9166 0.8697 0.9010

BLIINDS-II 0.9312 0.9296 0.9003 0.9282

BRISQUE 0.9400 0.9418 0.9085 0.9356

GMLOG 0.9511 0.9551 0.9243 0.9457

CORNIA 0.9416 0.9347 0.8845 0.9241

Proposed 0.9408 0.9414 0.9384 0.9535
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while approaching the performance of state-of-

the-art GMLOG on the LIVE database. How-

ever, when tested on the CSIQ database, our

framework has better prediction performance

than all of the competing NR-IQA algorithms.

These results support our intuition that using a

nonparametric framework can work better

across different databases. This also indicates

that our framework is robust and has good gen-

eralization capability. When compared to the

FR-IQA algorithms, our framework also outper-

forms PSNR and SSIM, and approaches FSIM.

Meanwhile, for the DS experiment, our

framework has the best prediction performance

for images affected by JP2K and WN distortions

on the LIVE database. It is also among the top

three NR-IQA algorithms for GB and FF cases

while giving comparable performance for JPEG.

When tested on the CSIQ database, our frame-

work performs the best for JP2K, WN, and GB

cases and comes second for JPEG. This is due to

the fact that our prediction performance

depends on what types of features are being

used. Because we are using statistical features as

in the GMLOG algorithm, the prediction pat-

terns for both our framework and GMLOG are

similar over the two databases. Different algo-

rithms’ features could be used in our framework

to achieve better performance in other distor-

tion classes.

Effects of Algorithm Parameters

Because the patches are sampled in a nonover-

lapping way, the number of patches for each

image is directly affected by the patch size.

Table 3 shows the changes in performance with

respect to patch size while fixing the labeled

images at 80 percent ratios. In general, a larger

patch size results in better performance; top

performance is achieved when the patch size is

set at 96. There is no significant difference in

performance when the patch size is increased

more than 96. Meanwhile, to investigate the

effect of varying the number of images in the

labeled dataset on the performance of the pro-

posed framework, we partitioned the databases

under three different settings: we used 80 per-

cent, 50 percent, and 30 percent of the images

to construct the labeled dataset while using the

remaining images for testing. Similarly, we eval-

uated all the other six competing NR-IQA algo-

rithms under the same settings.

Table 4 and Figure 3 show the SROCC results

for the NDS experiment under various training

Table 3. The Spearman rank order correlation coefficient (SROCC) values and the linear correlation

coefficient (LCC) values for different patch sizes.

Size 16 32 48 64 80 96 112 128

SROCC 0.5184 0.8162 0.9271 0.9367 0.9370 0.9408 0.9368 0.9387

LCC 0.5733 0.8131 0.9283 0.9376 0.9386 0.9414 0.9366 0.9379

Table 2. Overall performance for the distortion-specific experiment. (The top NR-IQA algorithms appear

in bold.)

Algorithm

LIVE CSIQ

JP2K JPEG WN GB FF JP2K JPEG WN GB

PSNR 0.8954 0.8809 0.9854 0.7823 0.8907 0.9363 0.8882 0.9363 0.9289

SSIM 0.9614 0.9764 0.9694 0.9517 0.9556 0.9606 0.9546 0.8974 0.9609

FSIM 0.9724 0.9840 0.9716 0.9708 0.9519 0.9704 0.9664 0.9359 0.9729

BIQI 0.7989 0.8911 0.9507 0.8457 0.7073 0.7573 0.8384 0.6000 0.8160

DIIVINE 0.9128 0.9096 0.9837 0.9212 0.8632 0.8692 0.8843 0.8131 0.8756

BLIINDS-II 0.9288 0.9420 0.9687 0.9232 0.8886 0.8870 0.9115 0.8863 0.9152

BRISQUE 0.9135 0.9645 0.9789 0.9509 0.8774 0.8934 0.9253 0.9310 0.9143

GMLOG 0.9283 0.9659 0.9849 0.9395 0.9008 0.9172 0.9328 0.9406 0.9070

CORNIA 0.9271 0.9437 0.9608 0.9553 0.9103 0.8950 0.8845 0.7980 0.9006

Proposed 0.9342 0.9412 0.9853 0.9433 0.8910 0.9395 0.9314 0.9591 0.9230
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(labeled) ratios. As expected, the performance

of all competing algorithms decreased as the

number of samples was reduced. On both data-

bases, our framework constantly performed bet-

ter than the competing algorithms at the 30

percent and 50 percent rates. At the 80 percent

rate, it also performed the best on the CSIQ

database but yielded slightly lower SROCC val-

ues than CORNIA and GMLOG on the LIVE

database. Thus, we can say that our framework

works better in situations where the number of

samples is small. Note that the top performing

algorithms in Table 4 appear in bold.

Computational Complexity

The computation time required by our algo-

rithm to estimate image quality in a typical 512

� 768 test image is dominated by three major

processes: feature extraction, I2C distance com-

putation, and quality estimation. The feature

extraction stage is the most time consuming

part of the algorithm. Because the features are

to be extracted locally at the patch level, a

higher number of test patches will lead to a lon-

ger feature extraction time. However, by

employing a non-overlap sampling strategy

and increasing the patch size, we can reduce

the number of test patches. Using the parame-

ter setting described earlier, about 0.09 seconds

is required to extract the GMLOG features for

the whole set of test image patches.

There is a clear tradeoff between prediction

performance and I2C distance computation. As

indicated in Table 4, a larger dataset size leads

to better prediction accuracy. However, a longer

computation time is required to compute the

I2C distance between the test patches and the

labeled patches. Using the 80 percent training

(labeled) rate, another 0.04 second is needed to

compute the I2C distances for the test patches

in one test image during the distortion identifi-

cation stage. Finally, an extra 0.06 second is

also needed to perform regression for local qual-

ity estimation.

In all, the overall computation time required

by the proposed algorithm to compute image

quality estimation for one 512 � 768 test image

is about 0.19 second. This is achieved using

unoptimized Matlab code on a computer with

an Intel i5 2.60 GHz processor. We did not con-

sider the dataset construction time here

because it was already constructed prior to the

testing stage. Table 5 compares the average run-

times of the competing algorithms. Although

BIQI is the fastest, it has the worst prediction

accuracy compared to the other algorithms.

BLIINDS-II is the slowest, followed by DIIVINE

and CORNIA respectively. While the proposed

algorithm is slower than GMLOG and BRIS-

QUE, it can still process up to five images per

second, thus providing an alternative solution

to real-time IQA applications.

T he fact that our proposed framework corre-

lates well with human perceptual meas-

ures of image quality across various kinds of

image distortions and performs comparably to

other algorithms is encouraging, given that our

Table 4. SROCC comparison for different training (labeled) sample ratios. (The top performing algo-

rithms appear in bold.)

LIVE database Ratio BIQI DIIVINE BLIINDS-II BRISQUE GMLOG CORNIA Proposed

30% 0.7484 0.7954 0.8973 0.9094 0.9208 0.9277 0.9320

50% 0.7993 0.8768 0.9198 0.9213 0.9343 0.9314 0.9375

80% 0.8204 0.9156 0.9312 0.9400 0.9511 0.9416 0.9408

CSIQ database 30% 0.6721 0.7838 0.8465 0.8628 0.8949 0.8605 0.9143

50% 0.7208 0.8246 0.8832 0.8857 0.9109 0.8706 0.9295

80% 0.7598 0.8697 0.9003 0.9085 0.9243 0.8845 0.9384

0.7

BIQ
I

DIIV
IN

E

BL
IIN

DS-
II

BR
ISQ

UE

GM
LO

G

CORN
IA

Pr
op

os
ed

0.75

0.8

0.85

SR
O

C
C 0.9

0.95

1
30% 50% 80%

Figure 3. SROCC comparison over different

training ratios on the LIVE database. The

proposed algorithm performs well, particularly in

small sample cases.
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proposed framework need not undergo any

prior training or learning phase, as parametric

NR-IQA models require.

For our future work, we can take further

steps to improve the performance of the pro-

posed framework. First, we can use saliency

detection to guide the patch sampling process

in the framework. We can first generate a visual

saliency map that weighs the importance of the

image’s local patches to the human perceptual

measures of image quality and then use it to

select appropriate patches for the test image. Sec-

ond, obtaining accurate distortion classes of the

test patches can also help us select better candi-

dates to be used for regression in the quality esti-

mation stage. As such, other I2C-based classifiers

can also be tested for better classification accu-

racy. Third, we can also consider integration of a

nonparametric incremental learning technique

to construct the labeled dataset when dealing

with an increasing number of new distortion

classes. Finally, similar to most of the previous

NR-IQA methods, our current work only focuses

on images degraded by a single type of distor-

tion. Encouraged by the promising results, we

plan to extend our framework to include images

with mixed distortions. MM
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