THE EFFECT OF COOLING SLOPE CASTING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A319 ALLOY AFTER PROCESSED BY EQUAL CHANNEL ANGULAR PRESSING

This report is submitted in accordance with requirement of the University Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Manufacturing Process) (Hons.)

by

NOR SHWAZNI BINTI ISHAH
B051310315
941114-02-5084

FACULTY OF MANUFACTURING ENGINEERING
2017
Tajuk: THE EFFECT OF COOLING SLOPE CASTING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A319 ALLOY AFTER PROCESSED BY EQUAL CHANNEL ANGULAR PRESSING

Sesi Pengajian: 2016/2017 Semester 2

Saya NOR SHWAZNI BINTI ISHAK (941114-02-5084)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan

☐ SULIT (Mengandungi maklumat yang berdaran keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

Alamat Tetap:
F 468 BATU 2 JLN JENIANG
08300 GURUN
KEDAH

Tarikh: 16/6/2017

Disahkan oleh:

Cop Rasmi:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat dari pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this report entitled “The Effect of Cooling Slope Casting on Microstructure and Mechanical Properties of A319 Alloy after Processed by Equal Channel Angular Pressing” is the results of my own research as cited in references.

Signature :

Author’s Name : NOR SHWAZNI BINTI ISHAK

Date : 16/12/2017
APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process) (Hons.).

The members of supervisory committee are as follow:

(Dr. Mohd Shukor bin Salleh)

DR. MOHD SHUKOR BIN SALLEH
Senior Lecturer
Faculty of Manufacturing Engineering
Universiti Teknikal Malaysia Melaka
Hang Tuah Jaya
76100 Durian Tunggal, Melaka
ABSTRAK

Dalam projek ini, feedstock daripada aloi A319 dihasilkan dengan menggunakan kaedah tuangkan ceraun penyelunkan. Bahan suapan yang dihasilkan kemudiannya digunakan untuk saluran sama sudut menekan (ECAP) menggunakan laluan A pada suhu bilik. Mikrostruktur dan sifat mekanikal aloi A319 sebelum dan selepas diproses oleh ECAP telah disiasat. Sebahagian daripada sampel ECAP telah menjalani T6 rawatan haba untuk menilai kesan jadual rawatan haba ke atas globularization aloi. Sampel aloi A319 telah dipanaskan pada 520 °C selama 8 jam dan kemudian lindap kejutan dalam air dan proses penuaan pada 154 °C selama 4 jam untuk meningkatkan sifat-sifat aloi A319. Kesemua sampel telah dianalisis dengan mikroskop optik (OM) dan mikroskop elektron pengimbas (SEM), ujian kekerasan serta ujian tegangan dan patah. Hasil kajian menunjukkan mikrostruktur selepas diproses oleh ECAP mempermerikan struktur lebih halus selepas 1 pass. Tambah绢 pula, struktur ECApeal aloi A319 mempunyai tindak balas yang sangat baik untuk pemulihan dan mekanisme penghaluran semula ditapis mikrostruktur berbanding sampel ceraun penyelunkan. The α-Al globules kurang daripada 80 μm dan faktor bentuk adalah lebih daripada 0.60. Selain itu, sampel ECAP yang menjalani T6 rawatan haba mendedahkan hasil positif dari segi pengagihan fasa homogen dan peningkatan sifat-sifat mekanikal berbanding dengan sampel bukan rawatan haba. Nilai kekerasan Vicker ini menunjukkan bahawa sampel ECAped menunjukkan kekerasan yang diperolehi lebih tinggi 108.0 HV kepada 114.5 HV selepas rawatan haba. Di samping itu, kekuatan tegangan sampel ECAped menyediakan 191.483 MPa sehingga 220 MPa dan kemuluran yang tinggi oleh sifat patah. Oleh itu, berdasarkan keputusan yang diperolehi mendedahkan bahawa taburan mikrostruktur dan sifat mekanikal aloi bertambah baik ke tahap tertentu kerana saiz grain yang sangat halus disampaikan oleh proses ECAped.
ABSTRACT

In this project, a feedstock of A319 alloy is produced by using cooling slope casting method. The feedstock then used for equal channel angular pressing (ECAP) using route A at room temperature. The microstructure and mechanical properties of A319 alloy before and after processed by ECAP are investigated. Some of the ECAP samples have undergone T6 heat treatment in order to evaluate the effect of heat treatment schedule on globularization of the alloy. The samples of A319 alloy was heated at 520 °C for 8 hours and then quenching in water and afterwards aging at 154 °C for 4 hours to enhance the properties of A319 alloy. All of the samples were then analyzed by optical microscope (OM) and scanning electron microscopy (SEM), hardness tests as well as tensile and fracture tests. The results revealed that the microstructure after processed by ECAP exhibits more refined structure after 1 pass. Furthermore, the structure of ECAPed A319 alloy had an excellent response to recovery and recrystallization mechanism refined the microstructure as compared to the cooling slope sample. The α-Al globules were less than 80 µm and the shape factor is more than 0.60. Moreover, the ECAP samples that underwent T6 heat treatment revealed the positive results in terms of homogenous distribution of phases and enhancement of mechanical properties as compared with non-heat treated sample. The Vicker’s hardness value indicated that ECAPed sample promoted the higher hardness 108.0 HV to 114.5 HV after T6 heat treatment. In addition, it was observed that for ultimate tensile strength of ECAPed sample provide higher strength 191.483 MPa up to 220 MPa and high ductility of fracture behavior after T6 heat treatment. Therefore, the results revealed that the microstructural distribution and mechanical properties of the alloy were improved to a particular extent due to the highly refined grains imparted by ECAPed process.
DEDICATION

I am dedicating this work to my beloved parents, Ishak bin Ahmed and Rubiah bt. Yusoff, who always inspire and support me with their dua and boundless love to endeavour in achieving a success in everything I do.

To my supervisor, Dr. Mohd Shukor bin Salleh, family and all my friends, without whom none of my success would be possible.
ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to Allah S.W.T for giving me a good health and capabilities so that I manage to complete this final year project successfully without difficulty. Without His blessings, it would be impossible for me to finish my project.

I would also like to acknowledge with much appreciation the crucial role of my supervisor Dr. Mohd Shukor bin Salleh who gave his full effort in guiding me in achieving the goal throughout the project. Thank you for all guidance, advices, supports and the opportunity given for me to learn and endure the experience while working on this final year project.

Furthermore, I want to express my gratitude and deepest thanks to my beloved parents and family for their endless supports and prayers for me to all finish this project smoothly. Besides, I would like to thank all assistant engineers and lecturers in Faculty of Manufacturing Engineering and Faculty of Engineering Technology, UTeM for their sincere assistance and knowledge sharing regarding this project.

Last but not least, I would like to give a special thanks to my friends who gave me much motivation and cooperation mentally in completing this report. I am so grateful for having a chance to learn and get a deep knowledge about this project.
TABLE OF CONTENTS

Abstrak i
Abstract ii
Dedication iii
Acknowledgement iv
Table of Contents v
List of Tables vii
List of Figures ix
List of Abbreviations xii
List of Symbols viii

CHAPTER 1: INTRODUCTION
1.1 Background of Study 1
1.2 Problem Statement 4
1.3 Project Objectives 5
1.4 Project Scope 5
1.5 Chapter Overview 6

CHAPTER 2: LITERATURE REVIEW
2.1 Introduction 7
2.2 Semisolid Processing 7
2.3 Aluminium Alloys 9
 23.1 A319 Aluminium alloy 10
2.4 Cooling Slope Casting (CS) of A319 Alloy 12
2.5 Cooling Slope Parameter 14
 25.1 Pouring Temperature (°C) 15
 25.2 Angle of Inclined Plate 16
 25.3 Cooling Slope Length (mm) 17
2.6 Microstructure of A319 Alloy 17
2.7 Equal Channel Angular Pressing (ECAP) 19
 27.1 Processing Route in ECAP 20
2.8 Microstructure of ECAP
2.9 Grain Refinement by ECAP
2.10 ECAP Parameter
 2.10.1 Type of Routes
 2.10.2 Number of Passes
2.11 T6 Heat Treatment
2.12 Mechanical Testing
2.13 Hardness Testing
2.14 Tensile Testing
2.15 True stress-true strain of ECAP

CHAPTER 3: METHODOLOGY
3.1 Introduction
 3.1.1 Gantt Chart
3.2 Flow Chart of the Process
3.3 Material
3.4 Selection of Parameter
 3.4.1 Cooling Slope
 3.4.2 Equal Channel Angular Pressing
3.5 Experimental Procedures
 3.5.1 Preparation of Sample for CS process
 3.5.2 Production of Feedstock by CS and Conventional Casting
 3.5.3 Preparation Sample for ECAP Process
 3.5.4 T6 Heat treatment
3.6 Microstructural Investigation
 3.6.1 Sample Preparation for Cooling Slope Microstructural
 3.6.2 ECAP Microstructural
 3.6.3 Image-J Software Analysis
3.7 Hardness Testing
3.8 Tensile Testing
 3.8.1 Preparation of Samples for Tensile Test
 3.8.2 Performing Tensile Test
CHAPTER 4: RESULT AND DISCUSSION

4.0 Overview 44
4.1 Microstructural Investigation 44
 4.1.1 Optical Microscope Analysis 44
 4.1.2 Scanning Electron Microscopy Analysis 47
4.2 Shape Factor and Globule Size 49
 4.2.1 Cooling Slope and ECAP Process 49
4.3 Hardness Testing 53
4.4 Tensile Testing 55
4.5 Fracture Testing 57

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion 59
5.2 Recommendations 60
5.3 Sustainability Development 61

REFERENCES 63

APPENDICES

A Gantt Chart for Overall Project FYP I and II 67
B Graph of Tensile Result for A319 alloy 69
LIST OF TABLE

2.1 Technique used in Semi-solid metal processing 8
2.2 Designation system of aluminum alloys with four-digit 10
2.3 Chemical composition of LM4 (A319) alloy 11
2.4 Cooling slope parameters 15
2.5 Common Aluminium Heat Treatment Tempers 25

3.1 Chemical composition of A319 alloy (wt %) 31
3.2 Parameter involved in cooling slope casting 32

4.1 The value of Vickers Hardness (HV) before heat treatment 53
4.1 in as-cast, cooling slope and ECAP sample
4.2 The value of Vickers hardness in non-heat treated and 54
4.2 T6 heat treated samples
LIST OF FIGURES

2.1 (a) Melt the molten by cooling slope casting process (b) casting by 13
2.2 Schematic illustration of CS casting process 13
2.3 The pores produced upper the CS ingots at different pouring temperature 15
2.4 The different of the bulk porosity of the CS cast ingots with different pouring temperatures 16
2.5 Microstructure of A319 alloy (a) Dendritic microstructure (b) Globular microstructure 18
2.6 Microstructure of alloy A319 in mould under CS casting process 18
2.7 Microstructure of as-cast A319 alloy 19
2.8 Principally sketch of ECA pressing 20
2.9 Different ECAP routes for repetitive pressing 20
2.10 TEM micrographs of aluminum after four times ECAP passes route (a) A and (b) B 22
2.11 The SAED pattern microstructure after passage via the die for 22
(a) 4 pressing route B and (b) 8 pressing, route C
2.12 Shearing patterns of routes A, B and C 23
2.13 Grain size of copper alloy after 6 passes and 12 passes of ECAP 24
2.14 Graphical represent the different in yield stress as a function of grain size 26
in ultra-fine grained materials
2.15 Tensile sample for ECAP 28
2.16 The relationship of true stress-true strain for initial state 28
(a) room temperature (b) 300°C
3.1 Flowchart 30
3.2 The heating flow and liquidus fraction curve of A319 alloy by DSC 32
3.3 The ingot material of A319 alloy 33
3.4 Cutting process of A319 ingot 34
3.5 Experiment setup for cooling slope 35
3.6 Cooling slope casting procedure 35
3.7 Size of mound 36
3.8 Experiment setup for ECAP process 36
3.9 Heat Treatment Process
3.10 CS casting feedstock with its main dimensions and the position of Metallographic specimens in mm
3.11 Step by step samples preparation for microstructure investigation
3.12 Scanning Electron Microscope (SEM)
3.13 Rockwell hardness testing
3.14 Image-J Software Program for image analysis
3.15 Vickers hardness testing
3.16 CNC turning machine
3.17 Cylindrical Tensile Sample
3.18 Universal Testing Machine (UTM)

4.1 OM microstructure of A319 alloy for non-heat treated and T6 heat treated at 50 μm.
4.2 SEM microstructure of A319 alloy for 200X and 800X
4.3 SEM-EDX analysis of A319 alloy.
4.4 Variations in shape factor of three different processes
4.5 Variations in globule size (μm) of three different processes.
4.6 Comparison in shape factor of non-heat treatment and T6 heat treated of cooling slope and ECAP samples of A319 alloy.
4.7 Comparison in globule size of non-heat treated and T6 heat treated of cooling slope and ECAP samples of A319 alloy.
4.8 Variations of Vickers hardness value of A319 alloy for three different processes.
4.9 Variations of Vickers hardness value of A319 alloy for non-heat treated and T6 heat treated.
4.10 Fracture on tensile samples
4.11 Variations of comparison of UTS of non-heat treated and T6 heat treated sample.
4.12 Comparison of the % elongation A319 alloy for as-cast, non-heat treated and T6 heat treated samples
4.13 Fracture behavior of A319 alloy by SEM. 57
5.1 A wasted feedstock of A319 alloy. 62
5.2 A cooling slope plate coated with Boron Nitride. 62
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CS</td>
<td>Cooling Slope</td>
</tr>
<tr>
<td>EDM</td>
<td>Electrical Discharge Machine</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy-dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td>ECAP</td>
<td>Equal Channel Angular Pressing</td>
</tr>
<tr>
<td>GS</td>
<td>Grain Size</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MHD</td>
<td>Magnetohydrodynamic Stirring</td>
</tr>
<tr>
<td>OM</td>
<td>Optical Microscopy</td>
</tr>
<tr>
<td>FKP</td>
<td>Fakulti Kejuruteraan Pembuatan</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>RAP</td>
<td>Recrystallisation and Partial Melting</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>SF</td>
<td>Shape Factor</td>
</tr>
<tr>
<td>SIMA</td>
<td>Strain Induced Melt Activated</td>
</tr>
<tr>
<td>SEED</td>
<td>Swirled Enthalpy Equilibrium Device</td>
</tr>
<tr>
<td>SSM</td>
<td>Semisolid Metal</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>UTS</td>
<td>Ultimate Tensile Strength</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Testing Machine</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°</td>
<td>Degree</td>
</tr>
<tr>
<td>°C/min</td>
<td>Degree Celsius per minute</td>
</tr>
<tr>
<td>% EL</td>
<td>Percent elongation</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mm/min</td>
<td>Millimetre per minute</td>
</tr>
<tr>
<td>mm/s</td>
<td>Millimeter per second</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>kg</td>
<td>Kilograms</td>
</tr>
<tr>
<td>kN</td>
<td>Kilo Newton</td>
</tr>
<tr>
<td>S</td>
<td>Second</td>
</tr>
<tr>
<td>μm</td>
<td>Micro Meter</td>
</tr>
<tr>
<td>wt. %</td>
<td>Weight Percent</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

This chapter discusses the background of the study. In addition, this chapter also presents the problem statement, research objective, scope of study and the chapter overview.

1.1 Background of study

The automotive industry in producing the product with good physical and mechanical properties based on alloy becomes the highest demanded. Cooling slope casting is one of the techniques that have been used in recent years in casting industry. Before the CS casting is introduced, the technique such as thixoforming has been used to produce feedstock material for production purpose According to Kumar et al. (2014), the thixoforming process involved a huge cost of producing specialized ingots and restricted of size to identify the non-dendritic or globular microstructure in feedstock. In other hand, high cost involved in preparing the feedstock by using thixoforming process. All these process are related with the semi-solid metal process by Kapranos et al. (2003).

Semi-solid metal process (SSMP) is a process of producing the product based on automotive manufacturing. Not only that, this forming process was invented at Massachusetts Institute of Technology (MIT) by Spencer in early 1970s. During last 4 decades, there a lot of materials have been tested using this semi-solid metal
process. SSMP is a significance aspect involved in the art of aeronautics which heavier compare to aircraft and marine component for near net shape of manufacturing.

The cooling slope casting (CS) is a most popular method used in producing the suitable feedstock based on alloys. The CS used simple equipment to setup the process with low cost. In addition, Mohammed et al. (2013) found that the cooling slope technique is the simplest non agitation process which can be used to produce feedstock with a near-globular solid fraction in a liquid matrix. Moreover, in this method the molten alloy is poured through a cooling slope plate and subsequent solidification in a mould. The CS is a continuous casting process that works by applying a low superheat to the metal at a constant temperature near to or just above the liquidus temperature. The molten metal is then poured into cooling slope and the solidified sample is collected from the mould. Legoretta et al. (2008) stated that in CS process the parameters involved such as mould material, mould temperature, cooling slope length, cooling slope angle, superheat and pouring temperature which directly affect the final microstructure of the solidified slurry.

Besides that, there are several advantages and disadvantages of the CS process. The advantages of this process are most simple method to produce feedstock with cost effective because CS process used advanced semisolid process based on the technology without any special tool and equipment required. Not only that, the process provides a globular or spheroidal microstructure and non-dendritic microstructure with less segregation and porosity occur in the feedstock.

Furthermore, the limitation of the CS process gave a largest challenge in considering the suitable process parameters such as pouring temperature, cooling slope and cooling slope length to prevent the formation of pores and oxide know as casting defects.
Instead of CS casting method used in producing a feedstock, the first development of Equal Channel Angular Pressing was introduced by V.M. Segal at an institute in Minsk with his co-workers in 1977. The ECAP is also known as an Equal Channel Angular Extrusion (ECAE) that show the most suitable Sever Plastic Deformation (SPD) process which is a practical technique to produce the materials with good mechanical properties such as strength, high ductility by grain refining and the production of billets size with no changes. The ECAP became wide range of application used to accumulate deformation of in materials without any reduction in workpiece section by Parshikov et al. (2013).

In addition, the advantages of the ECAP is the orientation of the billet is altered or changed after each pressed. According to Thi and Ly (2007) a lot of systems of alloy have been well created using ECAP technique based on metals and alloys application. Martinez et al. (2005) found that the alloy A319 is generally consists of two main solidification stages with a hypoeutectic Al-Si alloy and the formation of aluminium rich (Al) dendrites through development of two phases (Al)-Si eutectic.

Therefore, the current study aims to investigate the microstructure and mechanical properties of A319 alloy. In order to make the research success, the A319 alloy are formed using CS combine with ECAP to produce the feedstock to analyze the microstructure and mechanical properties of A319 alloy.
1.2 Problem Statement

In the previous project by Werenskiold (2004), the process of ECAP has been applied to a commercial 6xxx series aluminium alloy. Moreover, Máthis et al. (2005) in studying AZ91 Mg alloy behavior processed by ECAP found that the crystal grain size was inhomogeneous for 4 passes of billets processed by ECAP and to get a homogenous microstructure the billets must pass at least 8 passes of ECAP process. It was observed that, the reduction of the grain size and the higher of the dislocation density effects in the increase of the tensile strength less than 100 °C. Yet, the homogenous distribution also achieved after 8 passes. Most of the researchers stated that microstructure produce after ECAP processed provide more refine microstructure compared to CS casting.

It was observed that the information regarding on the microstructure and mechanical properties of A319 alloy is still in shortage. The parameters of aluminium alloy used for ECAP process not an exactly for A319 alloy but for others aluminium alloys or closer to A319 alloy by Proni et al. (2016). Based on the problem faced, the feedstock produce by CS casting will go through the ECAP process to identify a better microstructure of A319 alloy. The higher the number of passes contributes a more refine microstructure of A319 alloy and mechanical properties.
1.3 **Project Objectives**

The objective of this project are focusing on:

1) To produce A319 feedstock via cooling slope casting process.
2) To investigate the microstructure of A319 alloy after ECAP process.
3) To investigate the mechanical properties of A319 alloy after Equal Channel Angular Pressing (ECAP).

1.4 **Project Scope**

In this project, the microstructure and mechanical properties of A319 alloy will be analyzed using the Cooling Slope technique and Equal Channel Angular Pressing. After the feedstock is produced, it will go through the testing processes which the samples will go through the hardness testing, tensile testing and fracture testing. In this study, the A319 alloy is chosen as samples in order to investigate the properties in A319 alloy. On top of that, the microstructural of the A319 alloy testing is done by the Optical Microscopy (OM) and Scanning Electron Microscopy (SEM). Therefore, the results from microstructural behavior is applied to analyze the globalization of primary crystal of A319 alloy after process of cooling slope casting and ECAP as a comparisons.
1.5 Chapter overview

In chapter one, it consists the background of the study, problem statement, project objectives, scope and chapter overview. The major objectives of this project are to produce the feedstock for ECAP process by CS technique and to investigate the microstructure and mechanical properties of A319 alloy after the specimen have go through the ECAP process. The scope and limitations of the research basically focus on the microstructure and mechanical properties on east specimen using CS process. In chapter two, the literature review is provided by previous study by online research by journals and other reliable resources regarding on the CS process in order to support the discussion and the methodology of project. Chapter three discusses the technique applied to conduct this research. Chapter four shows the data and results attained from the experiment conducted. Last but not least, chapter five completes the findings of study and it provides suggestions and recommendation for future research and improvement.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides the literature review on semisolid processing of aluminium alloy specifically and cooling slope casting that had been conducted in manufacturing industry. Additionally, reviews on cooling slope casting process on other aluminium alloys are presented. Generally, this chapter begins with review on semisolid metal processing of aluminium alloy. Besides, the preference of the A319 alloy as a primary material used in this study also supported in this chapter.

2.2 Semi Solid Processing

Semisolid processing (SSM) is known as a thixoforming process. Based on Mohamed et al. (2013), SSM processing is a technology used for metal forming that was invented by Spencer with supervises by Prof. Flemings at Massachusetts Institute of Technology (MIT) in 1970s. In addition, SSM processing provides a unique ability to form near net shape product by Kumar et al. (2014). The SSM processing is the key element of globular microstructure compared to dendritic microstructure that can minimize the segregation and porosity in the casting process with thixotropic behavior of semi-solid slurry.

According to Haga and Kapranos (2002) there are some advantages of SSM processing compared to conventional casting routes. The advantages of this