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ABSTRACT 

 

A numerical study was conducted to investigate the flow of water flowing through a 
rectangular channel with a hydraulic diameter of 86.58 μm.  A constant heat flux is applied 
to the heatsink top surface to investigate the cooling performance of the microchannel 
heatsink. The flow employed had Reynolds numbers between 140 to 1400. It was observed 
that within the aforementioned Reynolds number range, the water flows in laminar regiment. 
As the inlet velocity increased, the velocity profile took a longer path to develop. The effect 
of increasing Reynolds number also increased the localised Nusselt number and lowered the 
wall and fluid bulk temperatures. Substitution of water with Ag-H2O 0.5 wt% nanofluid 
resulted in better overall heat transfer performance in terms of wall temperature and Nusselt 
number. At 𝑅𝑒 = 140, the microchannel top wall temperature decreased as much as 3.5 °C 
and the convective heat transfer along the walls improved between 25% to 30% for 𝑅𝑒 =
1400. It is recommended that future works based on this topic to increase the range of 
Reynolds number so that the critical Reynolds number could be determined. Experimental 
validation is also crucial as numerical methods cannot exactly emulate the conditions in real 
life application. 
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ABSTRAK 

 

Satu kajian telah dijalankan bagi menyiasat aliran air melalui saluran berbentuk segi empat 
tepat dengan diameter hidraulik 86.58 µm. Fluks haba sekata telah diletakkan pada 
permukaan paling atas singki haba untuk mengkaji keupayaan penyejukan saluran mikro. 
Aliran yang digunakan mempunyai nilai Reynolds antara 140 ke 1400. Melalui pemerhatian, 
didapati bahawa aliran air tersebut bersifat laminar. Apabila halaju masuk dinaikan, profil 
halaju mengambil jarak yang lebih jauh untuk terbentuk. Dengan kenaikan nilai Reynolds, 
nilai Nusselt setempat turut meningkat serta suhu permukaan saluran dan aliran menurun. 
Penggantian air dengan Ag-H2O 0.5 wt% meningkatkan prestasi pemindahan haba dari segi 
suhu permukaan dan nilai Nusselt. Pada 𝑅𝑒 = 140, suhu permukaan atas saluran mikro 
turun sehingga 3.5 °C dan pemindahan haba konvektif meningkat antara 25% ke 30%. 
Kajian yang bakal dilakukan dalam bidang ini disarankan supaya menaikkan had Reynolds 
untuk menentukan nilai Reynolds kritikal. Pengesahan secara uji kaji adalah penting kerana 
kaedah berangka tidak mencerminkan keadaan-keadaan dalam aplikasi sebenar. 
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1. Introduction 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

This section describes the direction of the research and the significance behind it. The 

research goal is listed on the objective along with the boundary of the study. Summarisation 

of research outline is laid out. 

 

1.2 Introduction 

The rapid expansion of modern civilisation demands higher processing power for 

digital devices, such as computer. Consequently, the advancement of processing chips and 

microarchitecture skyrocketed, which in turn require more effective cooling methods. This 

is critical as the heat generated by electronic component severely affects the operation and 

degrade the component in a long run. 

Myriad of cooling solutions were developed to dissipate the component heat flux. 

However, there are still technology gaps in microchannel cooling, particularly with 

nanofluid as working fluid. Combination of microchannel high surface and nanofluid 

thermal performance is an interesting prospect. 

A commonly known challenge to this application is the scale of microchannels, which 

led to many inconsistencies among researchers. A numerical study on this theory shows that 

albeit the general acceptability of conventional theorems in microscale applications, there 

are large discrepancies observed on some of the flow aspects.  
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1.3 Research Background 

 The work on microscale cooling device was pioneered by Tuckerman and Pease 

(1981) that used etched microchannels with deionised water as the working fluid. In the 

experiment, a maximum temperature increment of 71 °C was obtained for a power density 

of 790 Wcm-2. Since then, the progress in this field has come a long way. One research 

discovered that microchannel heatsinks capable of dissipating heat flux of 1000 Wcm-2 with 

only 120 °C recorded maximum temperature (Roy & Avanik, 1996).  

 By implementing microchannel cooling systems, the main goals of electronic 

cooling; reduction of components maximum temperature and minimisation of surface 

temperature gradient could be efficiently accomplished (Garimella & Sobhan, 2003). To 

illustrate, a 14-mm cube of stacked microchannel heatsinks was able to transfer 10 kW of 

heat with only 80 °C of temperature difference using only water as the working fluid (Sharp, 

et al., 2005). 

 The main attribute that enable this excellent performance is that microchannel 

heatsinks has a high surface area per unit volume compared to larger scale devices (Qu & 

Mudawar, 2002). The distinction between channel sizes in terms of hydraulic diameter, Dh, 

was pointed out by Kandlikar (2002) which stated that microchannels have a range of 10 µm 

to 200 µm, minichannels between 200 µm to 3 mm, and beyond 3 mm is classified as 

conventional channels. As a follow-up, the classification was further narrowed down to 

include transitional microchannel (10 µm ≥ Dh ≥ 1 µm), transitional nanochannels (1 µm ≥ 

Dh ≥ 0.1 µm), and also molecular nanochannels (0.1 µm ≥ Dh) (Kandlikar, 2003). 

 To further enhance the understanding of microchannels, some researchers 

experimented with difference channel cross sectional shapes  (Tongpun, et al., 2014), 

channel configurations (Neama, et al., 2017), aspect ratios (Sahar, et al., 2017), and the 

effects of shaped ribs within the microchannel (Behnampour, et al., 2017). While most 
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researchers used water or oils as the heat transfer media, some of the published papers 

indicate the use of nanofluids as coolant (Chen & Ding, 2011). 

 Nanofluid, a term firstly introduced by Lee, et al. (1999) is a suspension that has 

dispersed nanosized metallic, metal-oxidic, or non-metallic particles (Zhou & Ni, 2008). The 

main benefit of using nanofluid as opposed to conventional fluid is the improved thermal 

conductivity. Nanofluids exhibit exceptional enhanced thermal conductivity through the 

addition of solid particles with diameters below 100 nm into the base fluid (Wu, et al., 2016). 

The key mechanism in the heat transfer performance lies within the suspension Brownian 

motion (Gupta, et al., 2017).  

 Typically, to increase nanofluid thermal performance, nanoparticles with better 

thermal conductivity is chosen. For example, in comparison with water, nanofluid with silver 

(Ag) nanoparticles display higher improvement percentage at 36% compared with 29% from 

single-walled carbon nanotube (SWCNT) (Gómez, et al., 2017). Also, by increasing 

nanoparticle volume concentration, the heat transfer coefficient can be improved (Togun, 

2016).  

 Microchannels and nanofluids has wider usage other than the aforementioned 

applications. Other than cooling electronics, microchannels are also used in micro thrusters, 

biomedical detection, and other fields (Zhang, et al., 2016). Whereas nanofluids 

implementation can be extended to quenching process (Babu & Kumar, 2012) and for solar 

collector application (Koca, et al., 2017). 
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1.4 Problem Statement 

Though there are many researches that focus on the liquid flow within a 

microchannel, many omit the hydrodynamic entrance length. Apart from that, the majority 

of research papers focus on the performance of nanofluids with alumina, copper, and 

titanium nitride nanoparticles, and few involve silver nanofluids. However, the main 

question is whether the flow in microchannel behave similarly to macro scale flow in terms 

of flow properties and thermal performance. 

 

1.5 Objectives 

The objectives for this study are listed as follows: 

i. To simulate the fluid flow at various Reynolds number in a microchannel, 

ii. To investigate the velocity profile in microchannel for water at various 

Reynolds number, and 

iii. To compare the Nusselt number on the channel walls for water and silver-

water nanofluid. 

 

1.6 Boundary of Study 

In this study, the method used to analyse the flow and thermal performance is 

computational fluid dynamics software (CFD), which is ANSYS Fluent. The working fluids 

that will be used are water (H2O) and silver-water nanofluid (Ag-H2O 0.5 wt%). The 

condition for the simulation is limited for single phase flow, at Reynolds number ranging 

from 140 to 1400. The microchannel have a hydraulic diameter of 86.58 µm. 
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1.7 Methodology 

This numerical study focuses on the thermal and flow performance of fluid inside a 

rectangular microchannel with a fixed hydraulic diameter of 86.58 µm. The working fluid 

for the study is pure water. The Reynolds numbers were manipulated by controlling the inlet 

velocity, with known values of hydraulic diameter and viscosity are kept constant. 

Concurrently, a constant heat flux is applied at the top surface of the heat sink. As the heat 

energy propagates through the media, the cooling performance of both fluids were 

compared. 

 To solve these problems, numerical method using ANSYS software package was 

used. Due to the lack of established mathematics exclusive for microchannel flow, the 

general solution for thermofluid applications was employed. In this study, SIMPLE (semi-

implicit pressure linked equation) particularly was used with energy equation. 

Primarily, the numerical result for water was compared to the work investigated by 

Qu and Mudawar (2002) to establish the validity of the solution. Next, the working fluid was 

substituted with nanofluid of fixed properties to detect any enhancement or degradation in 

flow and thermal performance. 
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1.8 Report Outline 

This paper titled as “the investigation of flow and heat transfer in microchannel” 

consists of five chapters. The next four chapters are numbered as below: 

 

Chapter 2 (Literature Review) 

Literature review is the section that discusses information related to the topic of this 

study. It provides the needed knowledge for the research to proceed. Prior research works 

were reviewed to determine the research gap and appropriate approach to achieve the study 

objectives. 

 

Chapter 3 (Numerical Work) 

It describes the steps and measures for this study. The specifics such as the simulation 

setups and microchannel heatsink design is also described in detail. 

 

Chapter 4 (Results and Discussion) 

The results and observations from the numerical works are compiled in this section. The data 

are presented in charts and compared to the outcome from similar researches. The reasoning 

and inference for the numerical study will be discussed in this chapter. 

 

Chapter 5 (Conclusion) 

This chapter is the culmination of all research work for this study. It concludes the findings, 

establish the key outcome of the research, and suggests future research works.  
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2. Literature Review 

CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Overview 

 In this segment, past research papers are reviewed to establish a sound understanding 

on the applicable theories and the engineering concept related to this study. Data from 

previous works are compiled and compared to validate numerical results in chapter 4. 

 

2.2 Microchannel 

 Microchannel has exceptional heat rejection performance due to its ability to 

accommodate for high surface area in a limited volume, which is why numerous 

experimental and numerical studies were conducted on the flow and heat transfer properties 

in microchannels. Many efforts directed towards proving whether the general solution in 

macro scale is applicable as the flow scale decreases. The Reynolds prediction for laminar 

and turbulent flow was also extensively studied as well as the enhancement in terms Nusselt 

number distribution, as well as pressure drop and friction factors. 

 In a numerical study by Emran and Islam (2014), a rectangular microchannel with 

231 µm and 713 µm was used to study the flow dynamics and heat transfer characteristics. 

An inlet temperature of 15 °C for water at Reynolds number between 225 to 1450 and a 

constant heat flux at the channel bottom was simulated. A declining linear pattern of pressure 

drop was observed throughout the channel and the highest bulk temperature recorded is at 

the region adjacent to the outlet.  
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 Dirker et al. (2014) has conducted an experiment to investigate the effects of inlet 

geometry is on the friction factors, Nusselt numbers, and critical Reynolds number 

associated with a single channel of 0.57, 0.85, and 1.05 mm in diameter. In adiabatic case, 

the critical Reynolds number, Recr, for contraction inlet is between 1800 to 2000. Meanwhile, 

in diabatic cases for contraction, bellmouth, and swirl inlets, Recr was found to be 2000, 

1200, and 800 respectively. Conventional model was able to correctly predict the friction 

factor and Nusselt numbers in laminar regions. 

 In another experiment conducted by Zhang et al. (2014), water flowing through 

multiport microchannel flat tube was tested to find the flow and heat transfer characteristics. 

Samples tested have hydraulic diameters between 0.48 to 0.84 mm, aspect ratios 0.45 to 

0.88, and relative roughness from 0.29% to 1.06%. Critical Reynolds number was found 

ranging from 1200 to 1600. Entrance effect has a prominent role in determining the friction 

factor in turbulent region, whereas the effect of aspect ratio on the critical Reynolds number 

is negligible. At high Re, the influence of roughness is more apparent although the laminar 

region is more influenced by entrance effect. 

 The flow behaviour of air in microchannel was experimentally studied by Kai et al. 

(2015). The study incorporated the use of copper and fibreglass microtubes with diameters 

of 0.2, 0.3, 0.4, 0.5, and 1.0 mm resulting in critical Reynolds numbers of 1100, 1300, 1600, 

1800, and 2100 respectively for each diameter sizes. Simultaneously as the diameter gets 

larger, the rate of pressure drop becomes faster. 

  The practicality of using conventional flow and thermal correlations in rectangular 

microchannel was tested by Kim (2016). 10 rectangular microchannels ranging from 155-

580 µm and aspect ratios of 0.25 to 3.8. The working fluids, FC770 and DI water, flow within 

Reynolds number limits of 30 to 3500. The effect of aspect ratio, α, is significant as it 

increases the critical Reynolds number from 1700 to 2400 when α is reduced from 1 to 0.25. 




