ENERGY SCAVENGING FOR MOBILE AND WIRELESS DEVICES USING CMOS RECTIFIER CIRCUIT

TAN CHONG WEI

This Report Is Submitted In Partial Fulfilment of Requirements For The Bachelor Degree of Electronic Engineering (Telecommunication Electronic) with Honours

Faculty of Electronics and Computer Engineering
Universiti Teknikal Malaysia Melaka

June 2017
BORANG PENGESAHAN STATUS LAPORAN
PROJEK SARJANA MUDA II

Tajuk Projek : ENERGY SCAVENGING FOR MOBILE AND WIRELESS
DEVIES USING CMOS RECTIFIER CIRCUIT

Sesi
Pengajian : 16 / 17

Saya TAN CHONG WEI
mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan
syarat-syarat kegunaan seperti berikut:
1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara
 institusi pengajian tinggi.
4. Sila tandakan (√):
 □ SULIT*
 □ TERHAD**
 √ TIDAK TERHAD

*(Mengandungi maklumat yang berdaftar keselamatan
atau kepentingan Malaysia seperti yang termaktub di
dalam AKTA RAHSIA RASMI 1972)

**(Mengandungi maklumat terhad yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Tarikh: 01/06/2017 Tarikh: 01/06/2017

Dr. WONG YAN CHIEW
Pensyarah Kanak
Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka (UTeM)
Hang Tuah Jaya
Jb 100 Ulu Tunggal, Melaka
"I admit that this report is the result of my own work except summaries and excerpts that each of them I have explained the source."

Signature: [Signature]

Student's Name: TAN CHONG WEI

Date: 2nd JUNE 2017
“I / we hereby declare that I have read this in my / our work is sufficient in scope and quality for the award of the Bachelor in Electronic Engineering (Telecommunication Electronic) with Honours.”

Signature : [signature]

Supervisor’s Name : DR. WONG YAN CHIEWS

Date : 2nd JUNE 2017
For my father and mother.
ACKNOWLEDGEMENT

First and foremost, I would like to thank all the lecturers in University Teknikal Malaysia Melaka and Faculty of Electronic and Computer Engineering who have taught, instructed, trained, and educated me. Without them, I would never accomplish this work.

I would like to express my deepest gratitude to my project supervisor Dr. Wong Yan Chiew for her generous guidance. Dr. Wong is kind and responsible that she has always ensured my progress is done correctly. With her advice and help, the project could conduct successfully. Besides, I would also like to thank Dr. Wong for giving me an opportunity to conduct this project. Through this project, I have enhanced my knowledge and experience.

Special thanks to Miss Bee Shei Er and Mr. Chan Lisen. They have spent time with me to discuss about the energy scavenging system topics. They are willing to share their knowledge on related topics. I am much appreciated with the good relationship with them and all the collaboration has been built up.

Besides, another thank I would like to give to them who have evaluate my work. I appreciate all the suggestion they have provided. Moreover, I would like to thank Mr. Sreedharan Baskara Dass who has provided a technical support on my project. In addition, I would like to thank my classmate who has helped me directly and indirectly.

Last but not least, I express the most wholehearted gratitude to my family. Thanks to their spiritual support and encouragement. They have motivated me whenever I was tired or depressed.
ABSTRACT

The world is surrounded with billions of radio devices, therefore RF energy is easy available from the ambient environment. The RF energy scavenging system can be realised by converting the RF source to stable DC output where this could be done by a rectifier. However, most of the rectifier only able to achieve low power conversion efficiency due to high threshold voltage drops and low input sensitivity. In this project, a CMOS rectifier is designed in 130nm technology. It is designed for high sensitivity at input power of -20dBm and operating in 2.45 GHz. This project covered complete flow of IC design with Cadence Virtuoso custom design tools from schematic to layout. In the schematic design a cross-coupled rectifier has been designed. This topology has been proved that have reduce the threshold voltage to approximately 50% as compared to the conventional rectifier. The rectifier is cascaded into 5 stages so that to increase the output voltage to a usable level. Supporting circuit such as matching circuit has been constructed for the rectifier so that it could receive RF energy from a RF port. Several parametric studies have been carried in this project, the parameter such as matching circuit component, transistor size and load resistor has been defined. These parameters provide the optimum performance of the rectifier. To ensure the rectifier could work properly, numerous simulation and data analysis is performed in this project. Transient response of the rectifier have been plotted, the rectifier shows a linear and stable output voltage and current. Next, the load capability of the rectifier has been determine by sourcing the current from the rectifier. The rectifier could draw out 1µA current at -10dBm input. The output current increased to 10µA as the input power increased to 0dBm. After that, a steady state analysis have been carried out to determine the steady state output voltage and output current. The rectifier have achieved output voltage at 1.742V and output current at 1.34µA. Besides, the rectifier has also achieved high power conversion efficiency at 68.26% at -20dBm. It has also achieved a high voltage gain at 88.91 at -20dBm too. Furthermore, the layout of the rectifier have been constructed, physical verification have been carried out.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>CONTENT</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>CONFIRMATION ON REPORT STATUS</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>SUPERVISOR'S CONFIRMATION</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xv</td>
</tr>
</tbody>
</table>

I INTRODUCTION

1.1. PROJECT OVERVIEW 1
1.2. PROBLEM STATEMENT 2
1.3. OBJECTIVE 3
1.4. SCOPE OF PROJECT 3
1.5. PROJECT DEVELOPMENT 3
1.6. REPORT OUTLINE 4

II LITERATURE REVIEW

2.1. OVERVIEW 6
2.2. RF ENERGY SCAVENGING 6
2.3. RECTIFIER 7

© Universiti Teknikal Malaysia Melaka
2.4. VOLTAGE MULTIPLIER 9
2.5. POWER CONVERSION EFFICIENCY (PCE) 9
2.6. METAL-OXIDE-SILICON FIELD-EFFECT TRANSISTORS (MOSFETS)
 2.6.1 MOSFET Structure 10
 2.6.2 Threshold Voltage 11
 2.6.3 I-V Characteristics 12
 2.6.4 Body Effect 13
2.7. THRESHOLD VOLTAGE CANCELLATION 13
 2.7.1 Bulk modulation technique 14
 2.7.2 Cross Coupled Rectifier 16
 2.7.3 Control circuit based and comparator based rectifier 20
2.8. SUMMARY 24

III METHODOLOGY

3.1. OVERVIEW 25
3.2. SPECIFICATION SETTING 26
3.3. SCHEMATIC DESIGN 26
 3.3.1 Simulation Setting 27
3.4. LAYOUT DESIGN 29
 3.4.1 Physical Verification Setting 29
3.5. SUMMARY 30

IV RECTIFIER ARCHITECTURE

4.1. OVERVIEW 31
4.2. RECTIFIER ARCHITECTURE 31
4.3. SUPPORTING CIRCUIT 35
4.4. SUMMARY 36

V DESIGN PARAMETERS
5.1. OVERVIEW 37
5.2. MATCHING CIRCUIT 37
5.3. PMOS & NMOS PARAMETRIC STUDY 40
5.4. LOAD RESISTOR PARAMETRIC STUDY 42
5.5. SUMMARY 43

VI RESULT AND ANALYSIS

6.1. OVERVIEW 44
6.2. TRANSIENT RESPONSE 44
6.3. LOAD CURRENT ANALYSIS 47
6.4. STEADY STATE OUTPUT VOLTAGE AND CURRENT 50
6.5. POWER CONVERSION EFFICIENCY AND VOLTAGE GAIN 52
6.6. LAYOUT DESIGN 53
6.7. SUMMARY 57

VII CONCLUSION AND RECOMMENDATION

7.1. OVERVIEW 58
7.2. PROJECT SUMMARY 58
7.3. FUTURE WORK RECOMMENDATION 59

BIBLIOGRAPHY 60
APPENDIX A 62
LIST OF FIGURE

Figure 2.1 RF energy scavenging system ... 7
Figure 2.2 (a) Half wave rectifier (b) Full wave rectifier 8
Figure 2.3 Voltage multiplier .. 9
Figure 2.4 Structure of n-type MOS device .. 10
Figure 2.5 Substrate connection of n-type MOS device ... 11
Figure 2.6 Bulk modulation arrangement ... 14
Figure 2.7 (a) Bulk Modulation PMOS arrangement based rectifier (b) Conventional
PMOS arrangement based rectifier .. 15
Figure 2.8 (a) Bulk Modulation implemented Self Vth cancellation scheme (b)
Conventional rectifier implemented Self Vth cancellation scheme 15
Figure 2.9 Voltage Multiplier using Bulk Modulation PMOS 16
Figure 2.10 Cross coupled rectifier ... 17
Figure 2.11 Cross-coupled rectifier with matching ... 18
Figure 2.12 (a) Cross-coupled voltage multiplier (b) Conventional voltage multiplier.... 18
Figure 2.13 Cross coupled rectifier with modified PMOS transistor 19
Figure 2.14 Rectifier with Vth compensation technique ... 21
Figure 2.15 Rectifier with an internal VTH cancellation method 22
Figure 2.16 Rectifier and comparator ... 23
Figure 2.17 Comparator of rectifier ... 23
Figure 3.1 Project flow chart .. 25
Figure 3.2 Simple simulation setting in Cadence Virtuoso 27
Figure 3.3 Transient response ... 27
Figure 3.4 S-parameter analysis .. 28
Figure 3.5 Periodic steady state analysis .. 28
Figure 3.6 DRC setting in Calibre .. 29
Figure 3.7 LVS setting in Calibre .. 30
Figure 3.8 PEX setting in Calibre .. 30
LIST OF TABLE

Table 2.1 Bulk Modulation topologies comparison .. 16
Table 2.2 Cross coupler rectifier comparison ... 20
Table 2.3 control circuit based and comparator based rectifier 24
Table 3.1 Rectifier specification ... 26
Table 5.1 Summary of design parameter .. 43
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>AC</td>
<td>Alternative Current</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>LDO</td>
<td>Low-dropout regulator</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal-Oxide Semiconductor</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal–oxide–semiconductor Field-effect Transistor</td>
</tr>
<tr>
<td>NMOS</td>
<td>N-type MOSFET</td>
</tr>
<tr>
<td>PMOS</td>
<td>P-type MOSFET</td>
</tr>
<tr>
<td>DRC</td>
<td>Design Rule Check</td>
</tr>
<tr>
<td>LVS</td>
<td>Layout Versus Schematic</td>
</tr>
<tr>
<td>PEX</td>
<td>Parasitic Extraction</td>
</tr>
<tr>
<td>PCE</td>
<td>Power Conversion Efficiency</td>
</tr>
<tr>
<td>SVC</td>
<td>Self Vth Cancellation</td>
</tr>
<tr>
<td>DTMOS</td>
<td>Dynamic Threshold-voltage MOSFET</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile communication</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1. Project Overview

RF energy has become one of the very common man-made energy source due to the highly usage of radio sources device such as mobile phones, television, WIFI devices etc. At the same time, the demand for battery free application like wireless sensor-based network is growing up. Compared to a self-powered system, a battery’s life span is limited to a system. This could be a challenge to achieve the fast grows in the integrated circuit technology as described by Moore’s law. Therefore, RF energy harvesting has become dominant to substitute a battery as the RF energy source is cheap and easy available. RF energy can be harvest with energy scavenging circuit. The circuit could extract the electrical energy from the ambient RF energy source and convert it into a stable DC voltage. One of the important blocks in the RF energy harvesting circuit is the rectifier circuit.

RF energy that could receive form the environment is usually low. It can be even worse when most of the mobile and wireless devices could receive RF signal with small gain antenna only. It could be a challenge for RF energy scavenging system to achieve high power conversion efficiency especially the threshold voltage of transistors in the rectifier circuit cause a major voltage drop. To solve the problem, a threshold cancellation method could be applied in the rectifier design. The threshold cancellation methods include bulk modulation technique and cross coupler rectifier topology. In addition a comparator based and control circuit based design can be applied in the rectifier to speed up the ON-OFF transition of transistor to prevent the reverse leakage current of transistor.
In this project, a CMOS rectifier will be implemented from schematic entry to simulation and the layout drawing with verification. The design of the rectifier will focus on the threshold cancellation and power conversion efficiency of the CMOS rectifier.

1.2. Problem Statement

As the emerging of Internet of things in the future, there will be billions of sensors, mobile devices and wireless devices would be needed to power up. However to power up those devices with battery is impractical. Therefore a RF energy scavenging system can be used as substitution for battery and provide power to the mobile and wireless devices. A CMOS rectifier is one of the important parts in the RF energy scavenging system which convert RF energy to stable DC supply.

To design a CMOS rectifier, the power conversion efficiency is the main consideration. The factor that affects the efficiency of the rectifier is the threshold voltage of diode. The RF energy that received by an antenna from the surrounding could only achieved in a low voltage. High threshold voltage cause major voltage drop, hence achieve low power conversion efficiency. The case can be even worse, if the rectifier is cascaded in multiple stage, the total threshold voltage drop could be higher. Zero V_{th} MOS or Schottky diode which have low threshold could use to solve the problem. However, Zero V_{th} MOS could result in high reverse leakage current while Schottky diodes are not supported in all CMOS technologies. Therefore a threshold cancellation technique needs to be proposed.

Although, there are several threshold voltage reduction techniques has been proposed by many researchers. However most of the topologies are facing a same problem, power conversion efficiency degraded due to reverse leakage current of transistor. Reverse leakage current could introduce during the non-switching state of a transistor. One of the factors that cause the reverse leakage current is the ON OFF transition of the rectifier is not fast enough this could cause a major power loss. Therefore a control technique need to be introduce to control the transition speed of the transistor in order to improve the forward current and eliminate the reverse leakage current.
1.3. **Objective**

The objectives of this project are:

- To identify the key parameters in CMOS rectifier
- To design a CMOS rectifier circuit with low threshold voltage
- To improve the power conversion efficiency of CMOS rectifier that could be applied on the RF harvesting circuit
- To verify the proposed methodology theoretically and analytically through modelling

1.4. **Scope of Project**

In this project, the CMOS rectifier would be done in 130nm CMOS technology. Schematic and layout of the CMOS rectifier would be designed and simulated in the Synopsys IC design software. The input signal for the CMOS rectifier would be 2.45GHz. It would able to be operating at input power as low as -20dBm. The input RF signal will be converted into higher DC voltage. The threshold voltage of the CMOS rectifier would be eliminated effectively and the CMOS rectifier would have better improvement on the power conversion efficiency as compared to conventional rectifier. In the end the output voltage rectifier should achieve a level that may be filtered by regulator in the energy scavenging system and finally usable for mobile and wireless devices.

1.5. **Project Development**

First and foremost, to design a CMOS rectifier, a research on previously proposed rectifier design has to be carried out. The fundamental theory of CMOS rectifier design and the existing topologies would be studied. Next, the specifications of the rectifier will be define, the specification are such as input power, input signal frequency, load resistor, W/L ratio and so on. After that, the design of the rectifier will be started with schematic design with Cadence Virtuoso IC design software. The architecture of the circuit will be concern on the threshold voltage reduction. Besides, the schematic will be simulate to make sure the circuit is well functioning. Once the schematic have been finalized, the project will be continued with layout drawing. Design rule check (DRC), Layout Versus Schematic (LVS) and Parasitic Extraction (PEX) will be performed to ensure that the simulation result of layout is similar the schematic design.
1.6. **Report Outline**

Five chapters are written in this thesis. The information gathered from the research and investigation is presented in this thesis. Each description and detail for each chapter is explains below:

Chapter 1 – Introduction

This is the most important part in this thesis. In this chapter, general ideal of the CMOS rectifier design have been described. The aims of the project have been stated and the boundaries of this work have been discussed.

Chapter 2 – Literature Review

In this chapter, a generic knowledge of CMOS rectifier design and previous research of CMOS rectifier have been studied. The generic knowledge includes the conceptual framework and applies theory of CMOS rectifier. The conceptual framework is such as brief concept of RF energy scavenging. While applies theory are such as rectifier, voltage multiplier, power convention efficiency and characteristic of MOSFET. Besides, the previous researches on CMOS rectifier are focus on the threshold cancellation technique. The specification and validity of previous researches are discussed. The previous researches that have studied can be categories into three parts which are Bulk Modulation Technique, Cross Coupler Rectifier and Comparator Based & Control Circuit Based Rectifier.

Chapter 3 – Methodology

This chapter will provides detailed method and procedures of designing the CMOS rectifier. A flow chart of the CMOS rectifier design and development is shown. The design specifications are stated precisely in this chapter. The steps involved in the CMOS rectifier design include schematic design, design simulation, layout design, layout validation and post-simulation.

Chapter 4 – Rectifier Architecture

This chapter describes the general concept of the rectifier design. Several part in the schematic have been explained, such as threshold reduction by cross coupled technique, reverse current prevention by bulk terminal connection, voltage doubled by charging capacitor and voltage smoothing by smoothing capacitor. Beside, multiple stages cross-
coupled rectifier is introduced in this chapter too. Next, the supporting circuit for the rectifier is explained block by block. The blocks which included in the supporting circuit are the RF port, balun, L-matching circuit, rectifier and the output port.

Chapter 5 – Design Parameters
There is several parameter need to be defined in order to maximize the performance of the rectifier. In this chapter, the value of the capacitor and inductor in L-matching circuit is determined by s-parameter analysis. Next, the width and length of PMOS and NMOS are identified by parametric study. Beside, another parametric study is carried for load resistor.

Chapter 6 – Result and Analysis
This chapter is one of the important parts of this thesis. It describes the performance of the rectifier. The analysis that have been performed in this chapter including the transient response, load current analysis, steady state output voltage and current, power conversion efficiency and voltage gain. The transient response shows the output achieved at a stable DC. The load current analysis is to test the load capability of the transistor. Moreover, the steady state output voltage and current shows the maximum output voltage and the output current that the rectifier could achieve. In addition, the power conversion efficiency and voltage gain represent how much power the rectifier can conserve and how sensitive the rectifier could receive input power.

Chapter 7 – Conclusion and Recommendation
This is the last section of this thesis, it has presented a true reflection of the work. The finding and analysis for general project are concluded. The objectives of the project are sum up. The future development and implementation are suggested.
CHAPTER 2

LITERATURE REVIEW

2.1. Overview

This chapter includes the background theory to design a CMOS rectifier. First of all, a brief concept of RF Energy Scavenging is introduced. Next the basic concept of rectifier, voltage multiplier and power conversion efficiency are discussed. Furthermore, the generic concepts of MOSFET such as MOSFET structure, threshold voltage, I-V characteristics and body effect have been reviewed. Besides, the previous researches of CMOS rectifier have been studied. These researches are focus on the threshold voltage cancelation technique such as Bulk modulation technique, cross-coupler rectifier and Comparator Based & Control Circuit Based Rectifier. Their specifications, operation, background theory and findings are described. Results of several topologies are compared.

2.2. RF Energy Scavenging

Energy scavenging is a process to collect certain form of energy such as solar energy, kinetic energy and RF energy and convert the energy in electrical energy. RF energy has become a common energy source due to tremendous number of radio broadcasting. RF energy can be collected from ambient by receiving it with an antenna. RF energy can be broadcasted in several bands such as 900MHz, 1800MHz and 2.4GHz. Figure 2.1 shows a block diagram of RF Energy Scavenging system.
The antenna is used to receive the RF energy from the surrounding. The received RF energy is usually low. It could even lower if RF energy is received by a small gain antenna which is commonly used by mobile devices. The received RF energy becomes the input power for the rectifier. Before the rectifier, a matching circuit is used to decrease the reflected power from the source into the rectifier circuit and this could prevent energy loss in the circuit. Next, the function of the rectifier circuit is to convert the RF input signal into a stable DC signal. A regulator is used to provide a smooth and stable linear DC signal. A Low-dropout regulator (LDO) can be a suitable component in this part. LDO could regulate the output voltage to a useful level in order to address the power needs for applications. Lastly, the regulator connected to the load of related application, the destination where the power wants to deliver.

2.3. Rectifier

A rectifier is used to convert a signal from ac to dc, or usually convert a zero average value signal into a nonzero average signal. Diode is usually used to construct rectifier such as half-wave rectifier and full-wave rectifier. To receive low power RF energy, a Schottky Diode with low forward voltage drop can be used to perform RF-DC conversion. N-MOSFET and P-MOSFET can be used to replace diode, especially the Schottky diode do not be supported in CMOS technology.

The half wave rectifier makes use of only one half cycle of the input alternating current while a full wave rectifier is more efficient than a half wave rectifier. Figure 2.2 shows half wave rectifier and full wave rectifier.
Figure 2.2 (a) Half wave rectifier (b) Full wave rectifier

There are only 1 diode will be use to design a half- wave rectifier while full wave rectifier require 4 diodes. The only diode of half wave rectifier will turn ‘on’ during positive half cycle of signal and turn ‘off’ during the other cycle. For full wave rectifier, during any half cycle of the signal, two diodes will be turn ‘on’ while the other two will be turn ‘off’.

In fact, there would be a forward voltage or threshold voltage drop for every forward bias diode. This would cause a major drop on dc level. It will perform very bad power convention efficiency especially for a low input power. Besides, the power conversion efficiency is affected by the reverse leakage current too. High reverse leakage current means a high power lost.

There are two main reasons that cause the undesired reverse leakage current. Reverse leakage current occur most the time when the diode or MOSFET do not turn ‘off’ fast enough, current will flow in opposite direction during the transition of the state. Another reason that causes the reverse leakage current is the low threshold voltage of diode or MOSFET. Because of threshold voltage, it could efficiently block the current during the reverse bias. That is the reason for zero-Vth diode is not suitable to be used in the design of rectifier. However, as mention before high threshold voltage decrease the power conversion efficiency of the rectifier.

There are several CMOS rectifier have been proposed[1]–[9] . These rectifiers are proposed for RFID, Body Area Network and RF harvesting.
2.4. Voltage multiplier

Voltage multiplier is similar to the rectifier but it could convert the AC from low voltage to higher DC voltage. The voltage multiplier circuit consists of two important components, capacitor and diode. Figure 2.3 shows a simple construction of a voltage multiplier.

![Figure 2.3 Voltage multiplier](image)

The capacitors are act as energy-storage element while the diode is use to control the connection of voltage to the capacitor. In the first cycle of the signal, a capacitor C1 is connected to the supply would charge to that same voltage. In the second cycle, C2 will be charge to double of supply voltage. So as next following cycle, C3 and C4 will be charge to double of supply voltage too. The sum of voltages under C2 and C4 rise to 4 times of supply voltage. The voltage can be further increased by adding more capacitor and diode.

2.5. Power Conversion Efficiency (PCE)

Power conversion efficiency or PCE is a measure of the performance of a power conversion circuit such as RF to DC conversion. High PCE represent low power loss in the system. There are several reasons that could the power loss, such as thermal loss, mismatch load and leakage current. The PCE could be calculated as the ratio of delivered power to the load and the input power. The PCE, \(\eta \) is given that equation (2.1)

\[
\eta = \frac{P_{load}}{P_{in}} \tag{2.1}
\]

PCE is a quantitatively unitless value. For a rectifier, its performance can be defined by PCE too. The output power is calculated by measuring the average output dc voltage and dividing the square of this value by the load resistor. To achieve high PCE in a