

Faculty of Manufacturing Engineering

STICK SLIP FRICTION MODELS CONTROL DESIGN APPROACH FOR FRICTION COMPENSATION IN MACHINE TOOLS DRIVE SYSTEM

Nur Aidawaty binti Rafan

Doctor of Philosophy

2017

STICK SLIP FRICTION MODELS CONTROL DESIGN APPROACH FOR FRICTION COMPENSATION IN MACHINE TOOLS DRIVE SYSTEM

NUR AIDAWATY BINTI RAFAN

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

DECLARATION

I declare that this thesis entitle "Stick Slip Friction Models Control Design Approach for Friction Compensation in Machine Tools Drive System " is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	NUR AIDAWATY BINTI RAFAN
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Name	:	PROF. MADYA DR. ZAMBERI BIN JAMALUDIN
Date	:	

DEDICATION

Thank you Allah for this journey in seeking of knowledge and Iman

To my loves,

Amirah Sofiyyah and Thoriq Ziyad

And

For those Moms

who loves their family more than their research

with tears and courage

who cherish their family milestone more than their research

with patience and perseverance

ABSTRACT

In machining process, positioning accuracy of the drives system is always the key element in producing good products with great precision and minimal or zero defects. Positioning accuracy of an electrical drive system is measured by two types of errors; tracking and contour errors. Reducing tracking error will reduce positioning error and thus increase motion accuracy. Meanwhile, reducing contour error will improve quality of machined surface that leads to improvement in overall precision. Position accuracy and precision are subjected to input disturbance acting on the drive system. A special form of error produced as a result of friction is quadrant glitches. Quadrant glitches are spikes occurred at each quadrant angle in a circular motion due to the effect of highly non-linear friction force acting on the feed drive mechanism influenced by pre-sliding friction characteristics at low velocity. At pre-sliding, friction is pre-dominantly a function of displacement that behaves as hysteresis function with non-local memory. This thesis aims at enhancing knowledge and contributes towards compensating quadrant glitches in circular motion for a ball screw driven XY milling positioning table by means of control design approach using enhanced friction force models. The objectives are to model friction behaviour, design and validate the friction compensation performance at low tracking velocity. Two models of friction forces were introduced; the Sigmoid-Like-Curve-Slip (SLCS) model and the Pseudo-Like-Curve-Slip (PLCS) model. Compensation via friction model based method was implemented in this thesis with different position controllers; namely, Proportional Integral Derivative Controller (PID), Cascade Proportional/Proportional-Integral (P/PI) Controller and Sliding Mode Controller (SMC). The effectiveness of the two proposed friction models were validated against the Generalized Maxwell Slip (GMS) friction model – a model known for effective friction compensation in pre-sliding regime. The numerical analyses and experimental validation performed showed improved performance with reduced contour errors. The SLCS model managed to produce a 99% reduction in the magnitude of the quadrant glitches when combined with cascade P/PI position controller at tracking velocity of 2 mm/s. For similar position controller, the PLCS model was able to produce a maximum quadrant glitches reduction of 70%. In comparison, the GMS model was only able to produce a maximum reduction of 40%. Also, both SLCS and PLCS models demonstrate better friction compensation performance when applied with cascade P/PI position controller compared to SMC. Whereas, PID controller has limited ability to sufficiently compensate quadrant glitches even with feedforward of friction models. In conclusion, this thesis has successfully presented significant improvement in accuracy of drives system made with implementation of the two new improved friction models combined with a cascade P/PI position controller. The new models are able to accurately describe friction behaviour in pre-sliding regime by providing smooth transition between pre-sliding and sliding regimes. However, further researches are desired in enhancing the capability of the friction compensation performance in terms of adaptive ability and robustness. Also, further analyses are necessary in the design of SMC robust controller for friction compensation.

i

ABSTRAK

Ketepatan posisi suatu sistem pemacu semasa proses pemesinan menjadi salah satu elemen utama di dalam menghasilkan produk yang tinggi kepersisan dan minima atau sifar kecacatan. Ketepatan posisi suatu sistem pemacu elektrik diukur oleh dua jenis ralat; ralat menjejak dan ralat kontur. Pengurangan ralat menjejak akan mengurangkan ralat posisi dan memperbaiki ketepatan pergerakan. Pengurangan ralat kontur pula akan memperbaiki kualiti permukaan produk seterusnya meningkatkan ketepatan. Ketepatan dan kepersisan posisi dipengaruhi oleh input gangguan yang bertindak pada sistem pemacu. Ralat khas yang terhasil akibat dari daya geseran adalah 'glic' sukuan. 'Glic' sukuan adalah pancang yang terhasil pada setiap sudut sukuan semasa gerakan membulat disebabkan oleh kesan daya geseran yang sangat tidak linear pada mekanisma sistem pemacu dengan dipengaruhi oleh karakteristik geseran pra-gelangsar semasa kelajuan rendah. Semasa pra-gelangsar, geseran adalah sebahagian besarnya menjadi fungsi kepada nilai anjakan dan berkelakuan seperti histeresis dengan memori bukan setempat. Tesis ini menyasarkan peningkatan pengetahuan dan sumbangan ke arah pengurangan 'glic' sukuan semasa pergerakan membulat oleh mesin pengisar pemacu skru bebola XY menggunakan kaedah rekabentuk sistem kawalan dengan model daya geseran. Objektif penyelidikan adalah untuk memodel dava geseran, rekabentuk dan mengesahkan pencapaian pampasan geseran pada kelajuan rendah. Dua model daya geseran telah diperkenalkan; model Sigmoid-Like-Curve-Slip (SLCS) dan Pseudo-Like-Curve-Slip (PLCS). Pengurangan menggunakan kaedah model geseran dengan pengawal posisi berbeza seperti; pengawal 'proportional-integralderivative' (PID), 'cascade proportional/proportional integral' (P/PI) dan 'sliding mode control' (SMC). Keberkesanan kedua-dua model geseran ini dibandingkan dengan model terdahulu iaitu Generalized Maxwell Slip (GMS) – model yang dikenali berkesan untuk pampasan geseran semasa pra-gelangsar. Analisa numerik dan validasi eksperimen yang dilaksanakan menunjukkan peningkatan pencapaian dengan pengurangan ralat kontur. Model SLCS menghasilkan 99% pengurangan pada magnitud 'glic' sukuan apabila bergandingan dengan posisi pengawal cascade P/PI pada kelajuan rendah sebayak 2 mm/s. Untuk pengawal posisi yang sama, model PLCS menghasilkan pengurangan maksimum magnitud 'glic' sukuan sebanyak 70%. Perbandingannya, model GMS hanya berjaya menghasilkan maksimum peratusan pengurangan magnitud 'glic' sukuan sebanyak 40%. Di samping itu, model SLCS dan PLCS menunjukkan pencapaian pampasan geseran yang lebih baik apabila diaplikasikan bersama pengawal posisi cascade P/PI berbanding pengawal SMC. Manakala, pengawal PID mempunyai keterbatasan dalam memampas 'glic' sukuan walaupun dengan model geseren suap depan. Secara kesimpulan, tesis ini telah berjaya menunjukkan peningkatan ketara pada ketepatan sistem pemacu yang ada melalui pelaksanaan kedua-dua model tersebut bersama pengawal posisi cascade P/PI. Modelmodel tersebut berjaya menggambarkan secara tepat tingkah-laku geseran pada pragelangsar melalui transisi yang lancar antara rejim pra-gelangsar dan gelangsar. Walaubagaimanapun, kajian lanjut diperlukan untuk meningkatkan keupayaan pencapaian pampasan geseran yang bersifat adaptif dan teguh. Selain itu, analisa lanjut adalah perlu dalam kajian rekabentuk pengawal SMC untuk pampasan geseran yang lebih berkesan.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to Prof Madya Dr Zamberi Bin Jamaludin for accepting me as a student. Your generousity, kind-hearted and patience always inspires me to keep learning during this study. May your life will be filled with happiness and redha from Allah. Secondly, I would like to extend my gratitude to Universiti Teknikal Malaysia Melaka (UTeM) and Faculty of Manufacturing Engineering (FKP) UTeM and to all academics and supporting staffs. This work is made possible with the financial supports of the Ministry of Higher Education Malaysia (SLAI) and the Universiti Teknikal Malaysia Melaka (UTeM). This financial support has enabled me to complete my study successfully. Next, it is a great pleasure to work in Control System of Machine Tools (CosMat) research group with Dr Ir Lokman Abdullah, Mr Chiew Tsung Heng, Mr Jailani Jamaludin and Ms Madihah Maarof. Special thanks also to Mrs Siti Aishah, Mr Remy and Mr Nazri for assisting me in the machines used especially Laser Interferometer and Roundness Machine Tester. Never forget the acquaintances that with me up and down, doing discussion on research with especially Ms Maziati Akmal and Mr Ismail Ismol. Thank you for the sweet friendship that we have been through that will be remained in my memories. Finally and most important in this journey, I wish to express my sincere and deepest gratitude to both my parents, Hj Rafan and Hjh Siti Aishah, my sister Siti Nurhani for their prayers, loves and understanding that only be repaid by Allah. To my other half, Muhammad Izzat and my beloved children (Amirah Sofiyyah and Thoriq Ziyad), truly and deeply thanks for your love letters that given to me with great sacrifices and du'as during difficult times of this journey. May our loves will bring us to Jannah. Amin.

TABLE OF CONTENTS

DEC	CLARA	TION	IAG
	DICATI		
	STRAC'		i
	TRAK		ii
ACKNOWLEDGEMENTS			iii
TABLE OF CONTENTS			
		ABLES	vii
LIS	T OF F	IGURES	X
LIS	T OF A	PPENDICES	XX
LIS	T OF SY	YMBOLS	xxi
LIS	T OF A	BBREVIATIONS	xxiii
LIS	Г OF P	UBLICATIONS	xxiv
CHA	APTER		
1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	1
	1.3	Objectives	4
	1.4		4
	1.5	Scopes of Research	4
	1.6	Contribution and Significant of Research Finding	5
	1.7	Content Organisation	5
	1.8	Summary	6
2.	LITI	ERATURE REVIEW	7
	2.1	Introduction	7
	2.2	Mechanical Drive Systems	8
		2.2.1 Ball Screw Drive System	9
		2.2.2 Rack And Pinion Drive System	10
		2.2.3 Linear Direct Drive System	11
	2.3	Friction Forces in Positioning System	12
	2.4	Effects of Friction Forces on Positioning Performance	16
	2.5	Fundamental of Friction in Positioning System	23
	2.6	Friction Model	31
		2.6.1 Model Based Friction Compensation	33
		2.6.1.1 Dahl Model	34
		2.6.1.2 Lugre Model	34
		2.6.1.3 Generalized Maxwell-Slip Friction Model	36

		2.6.1.2 Lugre Model	34
		2.6.1.3 Generalized Maxwell-Slip Friction Model	36
		2.6.1.4 Adaptive Friction Compensation	38
	2.6.2	Non-Model Based Fricton Compensation	40
		2.6.2.1 Linear Control Approach	40
		2.6.2.2 Nonlinear Control Approach	44
2.7	Positi	oning Error Analysis	49
	2.7.1	Positioning Errors	49
	2.7.2	Precision Analysis	51
	2.7.3	Uncertainty Analysis	52
	2.7.4	Workpiece Accuracy	53

2.7.4 Workpiece Accuracy

2.7.4.1 Machine Tool Errors 2.7.4.2 Machine Process Errors	53 54
2.7.4.3 Equipment Errors	55
2.8 Critical Review and Contribution to Research	55
2.9 Summary	59
3. METHODOLOGY	60
3.1 Introduction	60
3.2 Introduction of System Setup	63
3.3 System Identification	65 70
3.4 Friction Identification and Parameter Setup3.4.1 Friction Identification in Sliding Regime Using	70
3.4.1 Friction Identification in Sliding Regime Using Static Friction Model	70
3.4.2 Friction Model Pre-Sliding Regime Using Generalize Maxwell Slip Model	
3.5 Adjustment of Plant Model with Identified Friction Force	80
3.6 Experimental Design of Circular Motion	83
3.7 Contour Error Measurement	85
3.8 Process Flow of Experimental Work and Analysis	89
3.9 Summary	92
4. DESIGN OF FRICTION COMPENSATION MODEL BASED	
FEEDFORWARD	94
4.1 Introduction4.2 Sigmoid Curve	94 94
4.2 Sigmoid Curve 4.2.1 Significance of Sigmoid Curve	94 94
4.2.1 Significance of Signioid Curve	94 95
4.3 Design of Improved Stick Slip Friction Model	102
4.3.1 Modeling of Slip Functions	102
4.3.2 System Transfer Function with Improved Slip Model	
4.4 Design of Pid Controller with Feedforward Friction	
Compensation Model 4.4.1 Pid Position Controller	108
4.4.1 Pid Position Controller4.4.2 Pid Controller with Friction Model Feedforward	108 113
4.5 Design of Cascade P/Pi Controller	115
4.5.1 Cascade P/Pi Position Controller	115
4.5.2 Cascade P/Pi Position Controller with Feedforward	113
4.6 Design of Sliding Mode Control (Smc) Position Controller	120
4.6.1 Second Order SMC Position Controller for	
X-Axis	130
4.6.2 Second Order SMC Position Controller for	
Y-Axis	133
4.6.3 SMC Position Controller with Feedforward	136
4.7 Summary	137
5. RESULTS AND DISCUSSIONS	139
5.1 Introduction	139
5.2 Results of Circular Test Using Pid Controller	139
5.2.1 Numerical Results of Friction Compensation Using	

			Model Feedforward	139
		5.2.2	Experimental Results of Friction Compensation using	
			Pid Position Controller with Static and GMS Friction	
			Model Feedforward	141
		5.2.3	Analysis of Contour and Radial Tracking Error of	
			Applied PID Position Controller	145
5	5.3	Result	s Of Circular Test Using Cascade P/PI Position Controller	148
		5.3.1	Numerical Results of Friction Compensation Using	
			Cascade P/PI Position Controller with Static And GMS	
			Friction Model Feedforward	148
		5.3.2	Experimental Results Of Friction Compensation Using	
			Cascade P/PI Position Controller with Static And GMS	
			Friction Model Feedforward	150
		5.3.3	Analysis of Contour and Radial Tracking Error of	
			Applied Cascade P/PI Position Controller	154
		5.3.4	Analysis of Contour and Radial Tracking Error of	
			Applied Cascade P/PI Position Controller with GMS,	
			SLCS And PLCS Model	157
5	5.4	Result	s of Circular Test using SMC Position Controller	161
		5.4.1	Numerical Results of Friction Compensation using SMC	
			Position Controller with Static And GMS Friction Model	
			Feedforward	161
		5.4.2	Experimental Results Of Friction Compensation using	
			SMC Position Controller with Static And GMS Friction	
			Model Feedforward	163
		5.4.3	Analysis of Contour and Radial Tracking Error of	
			Applied SMC Position Controller	166
		5.4.4	Analysis of Contour and Radial Tracking Error of	
			Applied SMC Position Controller With GMS, SLCS	
			And PLCS Model	167
5	5.5	•	ses on Friction Compensation Performance:	
			id-Like-Curve-Slip Function (SLCS) And	
			p-Like-Curve-Slip (PLCS) Model	170
		5.5.1	Sigmoid-Like-Curve-Slip (SLCS) Model	171
_		5.5.2	Pseudo-Like-Curve-Slip (PLCS) Model	173
5	5.6	Summ	ary	175
		ARCH	ON AND RECOMMENDATIONS FOR FUTURE	176
	хезе л 5.1	Conclu		176
			vement of Research Objectives	170
	5.2 5.3		icant Contribution of Research Output	177
	5.3 5.4	-	mendations for Future Research	178
C	9.4	NECOII		1/9
REFER	ENCI	ES		180
APPEN				199
APPEN				200
APPEN				204

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison between tracking errors and contour errors	17
2.2	Quadrant glitch based on different feed rates	22
2.3	Number of studies to investigate SMC application	48
2.4	Summary of previous researches on study of friction compensation in	58
	pre-sliding regime	
3.1	System model parameters for x-axis and y-axis	69
3.2	Static friction model parameters for x-axis and y-axis	73
3.3	Parameters of GMS model for x-axis and y-axis	80
3.4	Original and revised parameters of plant system	83
3.5	Specified motion parameters for circular motion	84
4.1	Mathematical expressions produce sigmoid curve (Piatkowski, 2014)	96
4.2	Original and revised parameters of identified system transfer function	108
	for SLCS and PLCS mode	
4.3	Properties of PID controller	112
4.4	Parameter of PID controller for both x and y-axes	112
4.5	Properties of velocity loop PI controller	120
4.6	Parameters of velocity loop PI controller for both x and y-axes	120
4.7	Properties of position loop P control	126
4.8	Parameters of SMC position controller	136

- 4.9 Bandwidths for x-axis and y-axis with different controllers 138
- 5.1 Measured quadrant glitches and percentage of error reduction using 144PID position controller
- 5.2 Measured contour and tracking errors for different control approaches 145 with PID position controller
- 5.3 Measured magnitudes of quadrant glitches and the respective 153 percentage reduction in error at different velocities using cascade P/PI position controller
- 5.4 Measured contour and tracking errors for different control approaches 155 with cascade P/PI position controller
- 5.5 Measured contour and radial tracking error for GMS, SLCS and PLCS 159 model friction model feedforward with Cascade P/PI position controller at velocity of 2 mm/s
- 5.6 Percentage reduction in the magnitude of quadrant glitches formed 160 with Cascade P/PI position controller at tracking velocity of 2 mm/s
- 5.7 Measured magnitudes of quadrant glitches and the respective 165 percentage reduction in error at different velocities using SMC position controller
- 5.8 Measured contour and radial tracking errors for different control 166 approaches with SMC position controller
- 5.9 Measured contour and radial tracking error for GMS, SLCS and PLCS 168 model friction model feedforward with SMC position controller at velocity of 2 mm/s
- 5.10 Percentage reduction in the magnitude of quadrant glitches formed 169 with SMC position controller at tracking velocity of 2 mm/s

viii

- 5.11 Measured contour error and tracking error of SLCS model with 171 cascade P/PI and SMC position controller
- 5.12 Reduction in magnitude of quadrant glitch of SLCS model by different 172 controllers
- 5.13 Measured contour error and tracking error of PLCS model with 173 cascade P/PI and SMC position controller
- 5.14 Reduction in magnitude of quadrant glitch of PLCS model by different 174 controllers

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Factors affect performance of a machine tool (adapted from	2
	Jamaludin, 2008)	
2.1	Quadrant glitch (Jamaludin et al., 2008a)	8
2.2	Ball screw drive system (Altintas et al., 2011)	9
2.3	Rack and pinion (Anonymous, 2016)	11
2.4	Linear direct drive system	11
2.5	Free body diagam of a block at rest	14
2.6	System dynamic model (Sun et al, 2002)	16
2.7	Velocity against time shows motion reversal (Yao et al., 2013;	20
	Ko and Good, 2005; Tjahjowidodo et al., 2010)	
2.8	(a) Linear centered roundness measurement with feed rate 250	22
	mm/min (b) Linear centered roundness measurement with feed	
	rate 500 mm/min (c) Circular centered roundness measurement	
	with feedrate 250 mm/min (d) Circular centered roundness	
	measurement with feedrate 500 mm/min	
2.9	Microscopic of surface in contact (Armstrong-Hélouvry et al.,	24
	1994)	
2.10	Tustin friction model(Mekid ed., 2009)	25
2.11	Hysteresis phenomenon (Mekid ed., 2009)	26

2.12	Stick and slip motion (Canudas de Wit et al., 1995)	27
2.13	Friction components in static friction model (adapted from	28
	(Armstrong-Hélouvry et al., 1994))	
2.14	Typical friction behaviour	30
2.15	Parallel elements demonstrate spring like behaviour of non-local	31
	memory hysteresis (Tjahjowidodo, 2011)	
2.16	Feedforward-feedback control structure (Mekid ed., 2009)	32
2.17	Hysteresis as changes in friction force with respect to the velocity	33
	(Canudas de Wit et al., 1995)	
2.18	Bristles of two contact surfaces (Lampaert et al., 2004a)	35
2.19	Schematic diagram of a PID Controller	40
2.20	Schematic diagram of a cascade P/PI controller	42
2.21	IMC applied to the PID speed control (Mekid ed., 2009)	44
2.22	Reaching phase and sliding motion (Edwards and Spurgeon,	45
	1998)	
2.23	(a) Signum function (b) Approximation signum function	47
2.24	Previous research on study of friction compensation in pre-	57
	sliding regime (Lampaert et al., 2003; Zschack et al., 2012;	
	Piatkowski, 2014; Park et al., 2001; Zhu and Fujimoto, 2013b;	
	Edwards and Spurgeon, 1998)	
3.1	Machine tool positioning control main study	61
3.2	Flow chart of research methodology and activities	62
3.3	(a) An XY milling positioning table by Googol Tech Series (b)	64
	Schematic diagram of XY milling positioning table	

3.4	Motion control structure of XY milling positioning table for	65
	experimental work	
3.5	Schematic diagram of a mass-spring-damper system	65
3.6	FRF mesurement of x and y-axis	68
3.7	Schematic diagram for force estimation	69
3.8	Deflection in contact bodies	71
3.9	Friction force from average of input voltage at constant velocity	73
	of 2.0 mm/s (y-axis)	
3.10	Friction force-velocity mapping and manually fitted static	74
	friction model using equation (3.16)	
3.11	Parallel N-elementary in Maxwell-slip structure (Tjahjowidodo,	75
	2011)	
3.12	X-axis: measured friction force and position for sinusoidal	77
	reference signal of 10 μ m with frequency 0.1 Hz	
3.13	Y-axis: measured friction force and position for sinusoidal	77
	reference signal of 5 μ m with frequency 1 Hz	
3.14	GMS model parameters identification for X axis	78
3.15	GMS model parameters identification for Y axis	79
3.16	Block diagram of simulated system	81
3.17	Block diagram of simulated system with friction model	81
3.18	Bode diagram of measured FRF and identified system transfer	82
	function with static friction model	
3.19	Bode diagram of measured FRF and identified system transfer	83
	function with GMS model	
3.20	Quadrant glitch contour error (Jamaludin et al., 2008b)	84

3.21	Contour error	85
3.22	Contour error with respect to angle	89
3.23	Control structure for uncompensated system for an axis	90
3.24	Control structure for compensated system with feedforward for	90
	an axis	
3.25	Process flow for experimental work	91
3.26	Schematic diagram of experimental validation	92
4.1	(a) Hysterisis loop in the range of pre-sliding regime (b) Sigmoid	95
	curve for smooth link transition	
4.2	Figure 4.2: (a) Switching function for equation (4.1) (b)	99
	Switching function for equation (4.2) (c) Switching function for	
	equation (4.3) (d) Switching function for equation (4.4)	
4.3	Figure 4.3: Switching functions for different constant c, (a)	101
	c=0.1 (b) c=0.5 (c) c=1	
4.4	Elementary slip block and spring (Tjahjowidodo, 2011)	102
4.5	Figure 4.5: Main elements in friction force at spring elementary	103
	state (Jamaludin et al., 2008b, 2009)	
4.6	Figure 4.6: Block diagram of system with SLCS model to	104
	compensate friction numerically	
4.7	Bode diagram of measured FRF and identified system transfer	105
	function with SLCS model for x-axis	
4.8	Bode diagram of measured FRF and identified system transfer	105
	function with SLCS model for y-axis	
4.9	Block diagram of system with PLCS model to compensate	106
	friction numerically	

xiii

4.10	Bode diagram of measured FRF and identified system transfer	107
	function with PLCS model for x-axis	
4.11	Bode diagram of measured FRF and identified system transfer	107
	function with PLCS model for y-axis	
4.12	General scheme of PID controller	109
4.13	Bode diagram of open loop position transfer function for both x	110
	and y-axes tabulated from equation (4.10)	
4.14	Nyquist plot of x-axis and y-axis position open loop transfer	111
	function based on measured FRFs of the system via PID	
	controller	
4.15	Sensitivity function for both x-axis and y-axis via PID controller	111
4.16	Bode diagram of position closed loop for x and y-axes via PID	113
	controller	
4.17	Friction compensation scheme using friction model-based	114
	feedforward for PID controller	
4.18	Control scheme of combined PID and friction model feedforward	114
	for numerical validation	
4.19	Control scheme of combined PID and friction model feedforward	115
	for experimental validation	
4.20	General scheme of a cascade P/PI controller	115
4.21	Bode plot of the velocity open loop transfer function for x-axis	117
4.22	Bode plot of the velocity open loop transfer function for y-axis	117
4.23	Nyquist plot of x-axis position open loop transfer function based	118
	on measured FRFs of the system via cascade P/PI position	
	controller	

- 4.24 Nyquist plot of y-axis position open loop transfer function based 118 on measured FRFs of the system via cascade P/PI position controller
- 4.25 Sensitivity function for x-axis via cascade P/PI position 119 controller
- 4.26 Sensitivity function for y-axis via cascade P/PI position 120 controller
- 4.27 Bode diagram of position closed loop for x-axis via cascade P/PI 121 position controller
- 4.28 Bode diagram of position closed loop for y-axis via cascade P/PI 121 position controller
- 4.29 Bode plot of the position open loop transfer function of P control 123for x-axis based on measured FRF of the system
- 4.30 Bode plot of the position open loop transfer function of P control 123 for x-axis based on measured FRF of the system
- 4.31 Nyquist plot of x-axis position open loop transfer function of 124 position P control based on measured FRFs of the system
- 4.32 Nyquist plot of y-axis position open loop transfer function of P 125 control based on measured FRFs of the system
- 4.33 Sensitivity function for x-axis for position P control 126
- 4.34 Sensitivity function for y-axis for position P control 126
- 4.35 Bode diagram of position closed loop transfer function of 127 position P controller for x-axis
- 4.36 Bode diagram of position closed loop transfer function of 127 position P controller for y-axis

4.37	Cascade P/PI position control scheme with friction model based	128
	feedforward	
4.38	Control scheme of combined cascade P/PI and friction model	129
	feedforward for numerical analysis	
4.39	Control scheme of combined cascade P/PI and friction model	129
	feedforward for experimental validation	
4.40	Signum function	131
4.41	Bode diagram of SMC based on measured FRF for x-axis	133
4.42	Signum function	134
4.43	Bode diagram of SMC based on measured FRF for y-axis	136
4.44	Control scheme of combined SMC and friction model	137
	feedforward for numerical analyses	
4.45	Control scheme of combined SMC and friction model	137
	feedforward for experimental validation	
5.1	Numerical results of tracking error for tracking velocity 2 mm/s	140
	for x-axis using (a) PID without friction feedforward (b) PID	
	with static friction feedforward (c) PID with GMS feedforward	
5.2	Numerical results of tracking error for tracking velocity 2 mm/s	141
	for y-axis using (a) PID without friction feedforward (b) PID	
	with static friction feedforward (c) PID with GMS feedforward	
5.3	XY plots, contour errors and radial tracking errors for PID	143
	without friction feedforward, static friction and GMS at tracking	
	velocity of 2 mm/s	

- 5.4 Bar chart for measured contour and tracking error with PID 147 position controller and friction feedforward approach at (a) 2 mm/s (b) 3 mm/s (c) 4 mm/s
- 5.5 Percentage reduction in the magnitude of quadrant glitches at 148 different velocities with PID position controller and feedforward of friction models
- 5.6 Numerical results of tracking error for tracking velocity 2 mm/s 149 for x-axis using (a) Cascade P/PI without friction feedforward (b)
 Cascade P/PI with static friction feedforward (c) Cascade P/PI with GMS feedforward
- 5.7 Numerical results of tracking error for tracking velocity 2 mm/s
 5.7 Isomorphic to the second tracking error for tracking velocity 2 mm/s
 5.7 Isomorphic tracking error for tracking velocity 2 mm/s
 5.7 Isomorphic tracking error for tracking velocity 2 mm/s
 5.7 Isomorphic tracking error for tracking velocity 2 mm/s
 5.7 Isomorphic tracking error for tracking velocity 2 mm/s
 5.7 Isomorphic tracking error for tracking velocity 2 mm/s
 5.7 Isomorphic tracking error for tracking velocity 2 mm/s
 5.7 Isomorphic tracking error for tracking velocity 2 mm/s
 5.7 Isomorphic tracking error for tracking velocity 2 mm/s
 5.8 Isomorphic tracking error for tracking velocity 2 mm/s
 5.9 Isomorphic tracking error for tracking velocity 2 mm/s
 5.0 Isomorphic tracking error for tracking velocity 2 mm/s
 5.0 Isomorphic tracking error for tracking velocity 2 mm/s
 5.0 Isomorphic tracking error for tracking velocity 2 mm/s
 5.0 Isomorphic tracking error for tracking velocity 2 mm/s
 5.0 Isomorphic tracking error for tracking velocity 2 mm/s
 5.0 Isomorphic tracking error for tracking error for tracking velocity 2 mm/s
 5.0 Isomorphic tracking error for tracking error
- 5.8 XY plots, contour errors and radial tracking errors with cascade 152
 P/PI position controller using static and GMS friction model feedforward at tracking velocity 2 mm/s
- 5.9 Percentage reduction in the magnitude of the quadrant glitches at 154 different velocities with cascade P/PI controller
- 5.10 Bar chart for measured contour and tracking error with cascade 157
 P/PI position controller and friction feedforward approach at (a)
 2 mm/s (b) 3 mm/s (c) 4 mm/s
- 5.11 XY plots, contour errors and radial tracking errors with cascade 158
 P/PI position controller using GMS, SLCS and PLCS friction
 model feedforward at tracking velocity 2 mm/s

xvii

- 5.12 Bar chart for measured contour and radial tracking error for 159
 GMS, SLCS and PLCS friction model feedforward with cascade
 P/PI position controller at tracking velocity of 2 mm/s
- 5.13 Comparison in percentage reduction in the magnitude of 161 quadrant glitches at velocity 2 mm/s using cascade P/PI position controller
- 5.14 Numerical results of tracking error for tracking velocity 2 mm/s
 162 for x-axis using (a) SMC without friction feedforward (b) SMC with static friction feedforward (c) SMC with GMS feedforward
- 5.15 Numerical results of tracking error for tracking velocity 2 mm/s
 163 for y-axis using (a) SMC without friction feedforward (b) SMC with static friction feedforward (c) SMC with GMS feedforward
- 5.16 XY plots, contour errors and radial tracking errors with SMC 164 position controller using static and GMS friction model feedforward at tracking velocity 2 mm/s
- 5.17 Percentage reduction on magnitude of quadrant glitches at 165 different velocities with SMC position controller
- 5.18 Bar chart for measured contour and radial tracking error with 166SMC position controller and friction feedforward
- 5.19 XY plots, contour errors and radial tracking errors with SMC 167 position controller using GMS, SLCS and PLCS friction model feedforward at tracking velocity 2 mm/s
- 5.20 Bar chart for measured contour and radial tracking error for 169
 GMS, SLCS and PLCS friction model feedforward with SMC
 position controller at tracking velocity of 2 mm/s

xviii

- 5.21 Comparison in percentage reduction in the magnitude of 170 quadrant glitches at velocity 2 mm/s using SMC position controller
- 5.22 Percentage of reduction between using cascade P/PI and SMC 172 position controller for SLCS model
- 5.23 Percentage of reduction between using cascade P/PI and SMC 174 position controller for PLCS model