

Faculty of Manufacturing Engineering

ANALYSIS ON EFFECT OF BALL BLADDER SIZE DURING WATER HAMMER IN DOMESTIC WATER SYSTEM

Faarih Farhan bin Mohd Nasir

Master of Manufacturing Engineering (Manufacturing System Engineering)

2017

C Universiti Teknikal Malaysia Melaka

ANALYSIS ON EFFECT OF BALL BLADDER SIZE DURING WATER HAMMER IN DOMESTIC WATER SYSTEM

FAARIH FARHAN BIN MOHD NASIR

A thesis submitted in fulfilment of the requirements for the degree of Master of Manufacturing Engineering (Manufacturing System Engineering)

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Analysis on Effect of Ball Bladder Size during Water Hammer in Domestic Water System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this report is sufficient in terms of scope and quality as a partial fulfilment of Master of Manufacturing Engineering (Manufacturing System Engineering).

Signature	:	
Name	:	
Date	:	

DEDICATION

I would like to give a very special appreciation to my beloved family and friends for always been there in the time of need. Thanks for giving me continuous support in order for me to fulfill the needs of my Master Project. To my beloved parents, Mohd Nasir bin Kassim and Sakina binti Shaik Ahmad Yusoff and to my supervisor, Dr Mohd Shahir bin Kasim, and all my friends who have encouraged, guided and inspired me throughout the study process.

ABSTRACT

This project is studying the effect of ball bladder size on hydraulic shock during water hammer for a domestic water system. Water hammer is a common phenomenon when pipe in our home is shut down suddenly and can cause pump failures, water system fatigue, pipe rupture and contaminated water backflow. Thus, produce loud banging or hammering noise. To prevent this phenomenon, a suitable accumulator is a must. A ball bladder type of accumulator has been chosen due to its flexibility, light in weight and capability to absorb the hydraulic shock during water hammer. There will be two parameters for the experiment, which are; pressure of water during water hammer and effect of ball bladder size on hydraulic shock. Then, these parameters will be the analysis for reducing the effect of water hammer for the future. The experiments were conducted by using DAQami software in order to understand the behaviour of the shock wave due to water hammer with the present of ball bladder. Therefore, from the analysis result, the accumulator with four ball bladders with the size of 862.52 cm³ has the slowest time of water pressure increase when the test valve is shut down suddenly, no leaking at pipeline, no water droplets came out of the leaking and the sound of the pump is not noisy when the test valve is shut down immediately or suddenly. Besides that, the pressure of the shock wave is being reduced from 4.00 bar to 2.79 bar which was reduced to 1.21 bar (30%). Thus, an appropriate size of ball bladder will be determined for the domestic water system to prevent the water hammer with the size of 1523 cm³ approximately to seven ball bladders.

ABSTRAK

Projek ini adalah untuk mengkaji kesan bebola pada kejutan hidraulik semasa tukul air berlaku untuk sistem air domestik. Tukul air adalah satu fenomena, di mana ianya berlaku apabila paip air di rumah ditutup dengan cepat atau tiba-tiba dan ianya boleh menyebabkan kegagalan pam, sistem air, paip pecah dan juga pengaliran balik air yang tercemar. Oleh itu, tukul air akan menghasilkan bunyi hentakan yang sangat kuat atau bunyi penukul di dalam saluran air domestik. Untuk mengelakkan fenomena ini berlaku, pemilihan penumpuk yang sesuai adalah satu kemestian. Penumpuk jenis bebola telah dipilih atas ciri-ciri berikut seperti kebolehlenturan, ringan dan keupayaan untuk menyerap kejutan hidraulik semasa tukul air berlaku. Projek ini akan menjalankan dua parameter, iaitu; tekanan air semasa tukul air berlaku dan kesan saiz bebola pada kejutan hidraulik. Kemudian, hasil kajian projek ini akan di analisis bagi mengurangkan kesan tukul air untuk masa hadapan. Ujikaji telah dijalankan dengan menggunakan perisian DAQami untuk memahami tingkah laku gelombang kejutan hasil daripada tukul air dengan kehadiran bebola. Hasil daripada analisis, penumpuk dengan empat bebola bersaiz 862.52 cm³ mengambil masa yang lama untuk tekanan air naik apabila injap ditutup secara tiba-tiba, tiada kebocoran pada paip, tiada titisan air pada kebocoran dan bunyi pam tidak bising apabila injap ditutup serta merta atau tiba-tiba. Selain itu, tekanan gelombang kejutan dapat dikurangkan dari 4.00 bar ke 2.79 bar iaitu telah dikurangkan sebanyak 1.21bar (27%). Oleh itu, saiz bebola yang sesuai bagi sistem air domestik untuk mencegah tukul air ialah bersaiz 1523 cm³ kira-kira tujuh bebola.

ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim,

Alhamdulillah, thanks to Allah SWT, with his blessing and willing giving me the opportunity to complete this Master Project (MP). Firstly, I would like to express my deepest gratitude to my project supervisor, Dr Mohd Shahir bin Kasim who had guided me to complete this project successfully. I would like to express an appreciation for his idea, guidance, encouragement and professionally giving constant support in ensuring this project possible and run smoothly according to the planning schedule.

I also truly grateful to those lectures, especially Dr Ahmad Anas bin Yusof and staff in Faculty of Manufacturing Engineering and Faculty of Mechanical Engineering, that willing to help me in many ways. Sincerely thanks to them for their excellent cooperation, supports and inspiration during this project. Also, thanks to all my friends, those who have contributed by supporting my work, giving ideas and help me during this project started till it is fully completed.

Last but not least, deepest thanks and appreciation to my family for giving me encouragement and being with me during completing this project.

TABLE OF CONTENTS

PAGE

DEC	LARA	TION	
DED	ICATI	ON	
ABS	TRAC	Г	i
ABS	TRAK		ii
ACK	NOWI	LEDGEMENTS	iii
ТАВ	LE OF	CONTENTS	iv
LIST	T OF T	ABLE	vii
LIST	r of fi	GURE	viii
LIST	OF A	BBREVIATION, SYMBOLS AND NOMENCLATURE	xi
CHA	PTER		
1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	3

1.3	Objectives	5
1.4	Scope	5
1.5	Expected Outcome	6
1.6	Overview of Report	6

2.	LITE	ERATURE REVIEW		
	2.1	Domestic Water System		
		2.1.1 Gravity Tank	11	
		2.1.2 Pressurized Tank	13	
	2.2	Pipe Leaking	14	
	2.3	Water Hammer	18	
		2.3.1 Causes of Water Hammer	24	
		2.3.2 Water Hammer Mitigation Measures	25	
		2.3.3 Consequences of Water Hammer	26	

	2.4	Accum	Accumulator		
		2.4.1	Type of Accumulator	30	
			2.4.1.1 Diaphragm (or Ball) Type Accumulator	31	
			2.4.1.2 Spring Type Accumulator	32	
			2.4.1.3 Weight-Loaded Piston Type Accumulator	34	
			2.4.1.4 Hydropneumatic Piston Type Accumulator	35	
		2.4.2 A	Accumulator Selection	36	
3.	MET	THODOI	LOGY	37	
	3.1	Resear	rch Stage	38	
		3.1.1	Identify Problem Statement, Objective and Scope	40	
		3.1.2	Project Research	40	
	3.2	Project	t Schedules	40	
	3.3	Project	t Overall Flow Chart	44	
	3.4	Analys	sis on Problem Definition	46	
		3.4.1	Equipment	46	
			3.4.1.1 Shock Wave Guard/Testing Rig (TR)	46	
			3.4.1.2 Pump	48	
			3.4.1.3 Pressure Gauge	50	
			3.4.1.4 Ball Bladder Accumulator	51	
			3.4.1.4.1Ball Bladder Accumulator Housing	52	
			3.4.1.4.2 Ball Bladder	54	
			3.4.1.5 Pressure Transducer	55	
			3.4.1.6 Data Logger	57	
			3.4.1.7 DAQami Software	59	
		3.4.2	Calculation	66	
			3.4.2.1 Water Hammer Pressure	66	
			3.4.2.2 Size of Ball Bladder	67	
			3.4.2.3 Flow Rate of Water	68	
			3.4.2.4 Actual Pressure of Water Hammer	69	
	3.5	Experi	imental Setup / Testing	71	
		3.5.1	Standard Operating Procedure (SOP)	71	
		3.5.2	Experiment Variables	72	
			3.5.2.1 Size of Ball Bladder	72	

		3.5.2.2 Pressure of Water during Water Hammer	73
	3.6	Summary	73
4.	RES	ULT AND DISCUSSION	74
	4.1	Experiment Setup	75
		4.1.1 Setup of Parameters	75
	4.2	Experiment Hypothesis	76
	4.3	Analysis Results	76
		4.3.1 Size of Ball Bladder	76
		4.3.1.1 None Ball Bladder	77
		4.3.1.2 One Ball Bladder	78
		4.3.1.3 Two Ball Bladders	79
		4.3.1.4 Three Ball Bladders	81
		4.3.1.5 Four Ball Bladders	83
		4.3.2 Pressure of Water during Water Hammer	85
		4.3.2.1 None Ball Bladder	86
		4.3.2.2 One Ball Bladder	87
		4.3.2.3 Two Ball Bladders	88
		4.3.2.4 Three Ball Bladders	89
		4.3.2.5 Four Ball Bladders	90
	4.4	Discussion on Analysis	91
5.	CON	ICLUSION	98
	5.1	Conclusion	98
	5.2	Recommendation for Future Work	100
REF	EREN	CES	101

APPENDICES

101

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Water Consumption 2014-2015	9
2.2	Domestic Consumption 2014-2015	10
2.3	Water Recourses in Malaysia	11
3.1	Specification of the pump	50
3.2	Specification of the housing	53
3.3	Description of buttons in user interface	60
3.4	Conversion of unit to calculate pressure	67
4.1	Detail of parameters	75
4.2	Comparison of observation for first parameter	93
4.3	Total water pressure increase during water hammer	94
4.4	Percentage of reduction for pressure of water hammer	95
4.5	Detail on size of ball bladder and pressure of water hammer	96

LIST OF FIGURE

FIGURE

TITLE

PAGE

1.1	Ball bladder accumulator	4
2.1	Proportion of Domestic and Non-Domestic Consumption	9
2.2	Gravity tank for domestic water system	12
2.3	Pressurized tank for domestic water system	13
2.4	Leakage at pipe due to water hammer	16
2.5	Leaking of pipe at roof ceiling in UTeM	16
2.6	Left corner demolition	17
2.7	Pipe leaking damage surrounding especially wood	17
2.8	Transient-caused Failure, Super-aqueduct of Puerto Rico	18
2.9	Water Hammer Profile	22
2.10	Scheme of a pipeline with a fast acting flap valve	23
2.11	Schematic diagram of an accumulator	28
2.12	Cross-sectional views and symbols for hydraulic accumulators	30
2.13	Diaphragm (or ball) type accumulator	31
2.14	Spring type accumulator	32
2.15	Spring type fluid accumulator	33
2.16	Weight-loaded piston type accumulator	34
2.17	Hydropneumatic piston type accumulator	35
3.1	Flow chart to identify cause of problem for this project	38
3.2	Flow chart for research stage	39
3.3	Gantt chart for Master Project 1	42
3.4	Gantt chart for Master Project 2	43
3.5	Overall methodology flowchart	45
3.6	2D drawing of shock wave guard/testing rig before setup	47
3.7	Testing Rig (TR) after setup	47
3.8	Side view of pump	48

3.9	Top view of pump	49
3.10	2D drawing of pump	49
3.11	Pressure gauge	51
3.12	Ball bladder accumulator	52
3.13	Housing for ball bladder accumulator	53
3.14	Rubber ball as ball bladder	54
3.15	Diameter of one ball bladder	55
3.16	Pressure transducer	56
3.17	Water flow path inside the pressure transducer	56
3.18	Data logger	57
3.19	Mechanical drawing of data logger	58
3.20	User interface for DAQami software	59
3.21	First step of DAQami software	61
3.22	Second step of DAQami software	61
3.23	Third step of DAQami software	62
3.24	Fourth step of DAQami software	63
3.25	Fifth step of DAQami software	63
3.26	Sixth step of DAQami software	64
3.27	Seventh step of DAQami software	65
3.28	Graph for actual pressure of water hammer	70
4.1	Accumulator without ball bladder	76
4.2	Condition of one ball bladder accumulator before water hammer occurs	77
4.3	Reaction of one ball bladder during water hammer	78
4.4	Condition of two ball bladders accumulator before water hammer occurs	79
4.5	Reaction of two ball bladders during water hammer	81
4.6	Condition of three ball bladders accumulator before water hammer occurs	81
4.7	Reaction of three ball bladders during water hammer	83
4.8	Condition of four ball bladders accumulator before water hammer occurs	83
4.9	Reaction of four ball bladders during water hammer	85
4.10	Graph for valve open and close	86
4.11	Graph of water hammer for none ball bladder	87
4.12	Graph of water hammer for one ball bladder	88
4.13	Graph of water hammer for two ball bladders	89
4.14	Graph of water hammer for three ball bladders	90

іх

C Universiti Teknikal Malaysia Melaka

4.15	Graph of water hammer for four ball bladders	91
4.16	Leaking at pipe joint due to water hammer	91
4.17	Water droplet leaks at pipe elbow causes by water hammer	92
4.18	Pressure of water hammer versus ball bladder size	96
4.19	Graph of appropriate ball bladder size	97

LIST OF ABBREVIATIONS, SYMBOL AND NOMENCLATURE

DAQ	-	Data Acquisition
FKP	-	Fakulti Kejuruteraan Pembuatan
MP 1	-	Master Project 1
MP 2	-	Master Project 2
PVC	-	Polyvinyl Chloride
TR	-	Testing Rig
UTeM	-	Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

This chapter is about introducing the beginning of the proposed research. The title of this research is "Analysis on Effect of Ball Bladder Size during Water Hammer in Domestic Water System". This ball bladder accumulator will reduce the effect of water hammer in domestic water system. The content which will be discussed in this chapter is the background of study, problem statement, objectives and scope.

1.1 Background

Water operates in many conditions for example, making lives more pleasurable. Therefore, we must have the cautions not to overuse and abuse this precious resource. Water in its most complete form, it is odourless, nearly colourless and tasteless. In conditions of natural selection, human need water for living. So, water is the most important factor for the human organism. Without water, life is meaningless and disease will spread. All sorts of life require water, and if they do not receive enough of water, they will be deadened. In the past, water was used from the river, well and rainwater. In the new era, human can easily get water from the water storage tank or reservoir.

According to Department of Irrigation and drainage in 1982, Domestic Water system (DWS) defined as a system for the collection, handling, transmission, storage and distribution of water from source to consumers, for example, houses, irrigation facilities, industrial, commercial establishments, and public agencies for water related natural processes such as street flushing, fire fighting, and thus onward. DWS provides consumer with sufficient clean water. Common examples are gravity storage tanks and pressurized tanks located on the top floor of the building, connected to supply pumps. Domestic water supply is between 200 kPa to 690 kPa, but most home appliances are designed to operate with water pressure between 100 kPa to 830 kPa.

It is common that the low pressure of water supply is experiencing by domestic water user. However, some of the user facing high pressure, which can cause other problems. Gravity is the most effective way to bring water to the home. Therefore, the location for storage tank is higher so that water can flow by gravity. But not all can be supplied by gravity flow, some areas will require plumbing. Normally, water storage tank is filled at night when water use is lowest. The full tanks are then able to supply higher demand for water in the daytime. The water pressure at particular home will depend on the elevation of the home and proximity to the reservoir. The closer the home are to the elevation of the reservoir, the lower the pressure will be. Similarly, the lower the home is in relation to the reservoir, the higher the water pressure is supplied.

Do you always hear the sound of children playing marbles or sound of banging at night in your house? Timer range from 1 o'clock until 4 o'clock in the morning. This is due to water hammer, but then again, there are other things that create noise in water pipes which is the air in the pipe that easily confused with water hammer. The water hammer was literally blowing apart the system. Water hammer is known as hydraulic shock. It is caused by sudden changes of the water distribution network. Water hammer sounds are very common and something probably experienced. The sound is like a thumping or pounding in pipelines, for example by turning off a faucet, thus, witnessed the water hammer effect. Water hammer is the banging or thumping noise in pipelines, normally caused by pressure surge when a fluid changes direction instantaneously or is forced to stop. The sudden change in the liquid velocity generates a pressure wave which can have serious effects, ranging from pump defects to pipeline failures. The more severe water hammer is caused by the quick change at the inlet and the outlet of a water system.

The most usual causes are valves rapidly closing or pumps suddenly going online and offline. Fluid at liquid state is highly non-compressible. When an outlet valve closes quickly, the energy in the water flow will cause the nearest valve to compress. It acts like a spring, where the energy in the water system flows in a reverse direction, sending a shock wave until it hits a barrier, such as the pipeline joint. Energy from the shock wave reflects from the barrier and returns to hit the valve again. The shock wave moves back and forth within the pipeline until friction depletes the energy.

1.2 Problem Statement

Water hammer is a common phenomenon when a pipe in the house suddenly close. This produces a loud banging or hammering noise. The water hammer effect may cause pump failures, water system fatigue, pipe rupture and contaminated water backflow. Besides that, it can also lead to greater leakage and reduced reliability. Water hammer is a phenomena where it occurred when the flow been stopped suddenly, this phenomena is usually occurring from application of household appliances that use water as a medium to work, this phenomena cannot be prevented manually. Water hammer can cause pipeline failure due to high water pressure. For example, when the valve is close, the water downstream of the valve will attempt to keep falling, producing leaking at the pipe.

Therefore, the present of the accumulator can be solving to this water hammer problem. Unfortunately, existing accumulators are used mainly in large manufacturing plants and systems where they are used to absorb high capacity of pulsations and shocks. Such accumulators are not suitable for domestic uses which have a much lower volume and pressure have compared to the industries. When the water hammer occurs in houses, it is most likely that the pipelines have become waterlogged. To stop the water hammer, the only way is to shut off the water supply of the entire house, drain the whole system down, shut off all the valves and turn the water back on. The conventional method to solve the water hammer problems is very time-consuming.

Figure 1.1: Ball bladder accumulator.

Figure 1.1 shows the ball bladder accumulator that will be used in this project. Suitable accumulator is needed for domestic usage to prevent this problem. In order to have suitable accumulator, one of the factors that should be aware of is the size of ball bladder inside the accumulator. The ball bladder is needed to absorb the shock wave. Thus, the size of it must be accounted to have a suitable accumulator for domestic usage. Therefore, this master project is focused on study effect of ball bladder size on hydraulic shock during the water hammer for domestic water system. Then, the effect of the ball bladder size of water hammer will be analysis to study the behaviour of it.

1.3 Objective

The ultimate goal of this project is to study the effect of ball bladder size on hydraulic shock during water hammer for a domestic water system. The specific objectives that need to be achieved are:

- i. To investigate on rubber ball bladder condition during shock wave.
- ii. To analyse the effects of ball bladder size of water hammer.
- iii. To suggest the appropriate bladder size to absorb water hammer for domestic water system.

The purpose of this project is to study the effect of ball bladder size during water hammer.

1.4 Scope

The scopes that are being set as the guide of this research are:

- i. To study the problems faced by domestic water system caused by the water hammer effect. Other factors which cause the damage of pipelines will not be discussed.
- ii. To focus on the analysis of shock wave behaviour.
- iii. To compare the efficiency of ball bladder size during shock wave.
- iv. To understand the concept of hydraulic shock during water hammer.
- v. Pressure limit was set 2.0 bar that suite for domestic supply water pressure.

1.5 Expected Outcome

Water hammer is highly noticeable while using appliances that require large volume of water. This is because the appliances use a quick-acting solenoid shutoff valve, where water stops suddenly when the valves are shut. Thus, shock wave happens when the water stops suddenly. Therefore, presence of accumulators is needed in water systems to reduce the harmful effects of water hammer. This project focuses on the size of ball bladder required in the accumulator to absorb the water hammer to reduce the damage in the pipeline.

1.6 Overview of report.

This report consists of five chapters that are divided into two parts which are Master Project 1 (MP 1) and Master Project 2 (MP 2). The first part MP 1 is structured into three chapters and the two chapters more are at MP 2. The first chapter is about the introduction of the project. It consists of background of the study involve the study the effect of ball bladder size on hydraulic shock during water hammer for domestic water system, problem statement of the project, scope, expected outcome, and lastly the overview of the report.

The second chapter is all about literature review. In this chapter, it comprises information about works from other researchers that related to this project's title. This chapter also explains about the domestic water system, water hammer, pipe leaking, and accumulator used to develop this project.

The third chapter describes the design process to achieve the objectives for this project. It includes overall methodology flowchart, preliminary work, and final prototype design. As a continuation from MP 1, MP 2 will cover the two more chapters which are Chapter 4 and Chapter 5. MP 2 focused more on experimenting and finding the result and discussion of the result. The result will be presented in Chapter 4 while Chapter 5 will represent the conclusion of this project in the form of whether it is successful or not based on the objectives achievement and in addition of future suggestion in order to improve this project.

CHAPTER 2

LITERATURE REVIEW

Basically, this chapter provides the summary of literature reviews key points related to the domestic water system, pipe leaking, water hammer, and accumulator.

2.1 Domestic Water System

According to the statistics provided by Suruhanjaya Perkhidmatan Air Negara (SPAN) as shown in Table 2.2, domestic water consumption in Melaka is 234 consumption per capita per day in the year of 2014 and 235 consumption per capita per day in the year of 2015. Table 2.1 shows that in the year of 2014, the water consumption for domestic in Melaka is 196 million liters per day (MLD) (52.1%) and 202 MLD (52.0%) in the year o2015. This is proven that water consumption keeps increasing yearly. Therefore, total water consumption in Malaysia increases from 10,176 MLD in 2014 to 10,445 MLD in year 2015. Figure 2.1 shows the percentage of proportion of domestic and non-domestic consumption (Suruhanjaya Perkhidmatan Air Negara, 2017). Thus, this can be concluded that water is very important in our daily life either for domestic or non-domestic usage.

State	2014					2015				
	Domestic		Non-Domestic		TOTAL	Domestic		Non-Domestic		TOTAL
	MLD	%	MLD	%	MLD	MLD	%	MLD	%	MLD
Johor	823	67.8	391	32.2	1,215	811	64.4	448	35.6	1,259
Kedah	510	73.2	187	26.8	697	511	72.8	191	27.2	702
Kelantan	154	68.3	71	31.7	225	159	68.6	73	31.4	231
Labuan	17	35.8	31	64.2	48	17	35.2	32	64.8	49
Melaka	196	52.1	180	47.9	376	202	52.0	186	48.0	388
N. Sembilan	259	54.4	217	45.6	476	276	55.9	217	44.1	493
Pulau Pinang	483	59.4	330	40.6	813	483	59.5	329	40.5	813
Pahang	303	58.4	216	41.6	520	309	58.2	223	41.8	532
Perak	623	72.5	236	27.5	858	628	71.5	250	28.5	878
Perlis	81	84.5	15	15.5	95	81	84.2	15	15.8	96
Sabah	330	57.1	248	42.9	577	315	57.1	237	42.9	552
Sarawak	469	57.9	341	42.1	810	478	56.5	368	43.5	846
Selangor	1,779	58.4	1,268	41.6	3,048	1,862	58.6	1,316	41.4	3,178
Terengganu	241	57.7	176	42.3	417	246	57.5	182	42.5	428
MALAYSIA	6,267	61.6	3,909	38.4	10,176	6,378	61.1	4,067	38.9	10,445

Table 2.1: Water Consumption 2014-2015 (Suruhanjaya Perkhidmatan Air Negara, 2017).

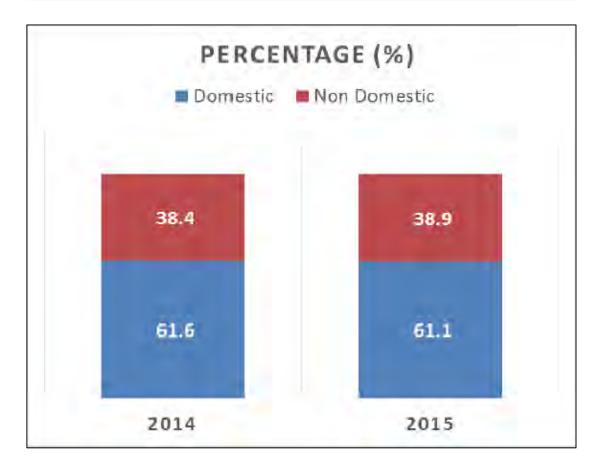


Figure 2.1 Proportion of Domestic and Non-Domestic Consumption (Suruhanjaya Perkhidmatan Air Negara, 2017).