

Faculty of Mechanical Engineering

INVESTIGATION OF MODIFIED SHIELDED METAL ARC WELDING (MOSMAW) FOR WELD PENETRATION PERFORMANCE

Manimaran a/l Selvam

Master of Science in Mechanical Engineering

2017

INVESTIGATION OF MODIFIED SHIELDED METAL ARC WELDING (MOSMAW) FOR WELD PENETRATION PERFORMANCE

MANIMARAN A/L SELVAM

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

DECLARATION

I declare that this thesis entitle "Investigation of Modified Shielded Metal Arc Welding (MOSMAW) for Welding Penetration Performance" is the result of my own research except as cited in the references. This thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: MANIMARAN A/L SELVAM
Date	: 1 st October 2017

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Mechanical Engineering.

Signature	:
Supervisor Name	:
Date	:

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved Mother Lecthumy Monian , Father Selvam Gangan and my Wife

Thevimalar

ABSTRACT

This study is about an investigation of modified shielded metal arc welding (MOSMAW) with tubular welding electrode. The existing shielded metal arc welding process (SMAW) was modified into MOSMAW to investigate the weld ability and performance of tubular welding electrode. In the preliminary investigation it was found that heat content and interaction of Helium (He) produced a deeper penetration depth (PD) and penetration area (PA) as compared with Argon gas (AR) with gas volume flow rate range (0 -2.5 L/min). Secondly from the weld microstructure investigation it was found that there were four weld phases that include ferrite (α), pearlite (P), widmanstatten ferrite (α_w) and the acicular ferrite (α_a) on three types of flux covered electrode (E6010,E6013 and E7018). Meanwhile hardness range was evident on the weld regions within the SMAW process. Based on, the nondestructive testing, PT and RT method the impact of moisture effect was found with the usage of E7018 tubular electrode which had weld surface defects compared to the use of E6013 tubular electrode. As for the tensile tests, E7018 had higher ultimate tensile strength (UTS) compared to E6013 electrode. The fracture mode found was ductile fracture and the guided bend test found E6013 and E7018 with fed orifice gases to have uniform face bend without the initiation of any crack. As for the weld region element analysis it was found that it had the usual element composition of carbon steel and electrode flux material in weld metal, HAZ and base metal. Moreover, the weld arc temperature measurement in the MOSMAW process with E6013 with Helium fed gases produced higher arc temperature compared to the process without gas provision. The DOE results indicated that the weld variables welding current (I), electrode travel speed (S), electrode travel feed rate (F) and volume flow rate (Q) interacted significantly with the responses bead width W, penetration depth PD, penetration area PA and dilution %D. Further investigation on the DOE samples of weld penetration depth (PD) and penetration area (PA) indicated that the interaction were proportional to welding current (I) and volume flow rate (O). The micro hardness test result hardness rate region was found to be within the SMAW carbon steel hardness range.

ABSTRAK

Kajian ini adalah mengenai penyiasatan kimpalan arka logam yang dikenali sebagai (MOSMAW) yang diubahsuai dengan menggunakan elektrod kimpalan jenis tubular. Kaedah kimpalan arka logam yang sedia ada dikenali sebagai (SMAW) telah diubahsuai ke MOSMAW untuk menyiasat keupayaan kimpalan dan prestasi elektrod kimpalan tubular. Dalam penyiasatan awal mendapati kandungan haba dan interaksi gas Helium (He) menghasilkan kedalaman penembusan yang lebih mendalam (PD) dan keluasan penembusan (PA) berbanding dengan gas Argon (AR) pada kadar isipadu gas antara (0 -2.5 L / min). Lain daripada itu, pada penyiasatan mikrostruktur mendapati terdapat empat fasa struktur iaitu ferrite (α), pearlite (P), widmanstatten ferrite (α_w) dan acicular ferrite (α_a) pada elektrod fluks bersalut (E6010, E6013 dan E7018). Seterusnya, bagi keputusan ujian kekerasan mendapati tahap kekerasan pada fasa kimpalan memadahi dengan tahap kekerasan SMAW. Sementara itu, keputusan ujian tanpa musnah dengan kaedah PT and RT mendapati faktor kelembapan pada elektrod besalut E7018 menghasilkan kecacatan pada kimpalan berbanding dengan penggunaan elektrod besalut permukaan E6013.Seterusnya, bagi ujian tegangan mendapati electrode E7018 mempunyai kekuatan tegangan yang lebih tinggi (UTS) berbanding dengan elektrod E6013. Dalam pada itu, semasa ujian tegangan mendapati kesemua sampel ujikaji patah mengikut mod patah mulur. Manakala pada ujian kelenturan mendapati untuk elektrod bersalut E6013 dan E7018 lentur pada muka kimpalan tanpa sebarang keretakan pada permukaan kimpalan. Selain itu, bagi analisa elemen pada fasa kimpalan mendapati kesemua komposisi kimpalan memadahi komposisi elemen pada kawasan keluli kimpalan, HAZ dan karbon keluli asas .Lain daripada itu, untuk ujian pengukuran suhu pada kimpalan MOSMAW dengan elektrod E6013 dan E7018 mendapati proses MOSMAW dengan saluran gas Helium menghasilkan suhu arka tertinggi berbanding dengan kimpalan MOSMAW tanpa saluran gas. Pada ujian DOE mendapati mendapati pembolehubah kimpalan seperti arus elektrik (I), kelajuan pergerakan elektrod (S), kadar pergerakan elektrod (F) dan kadar aliran isipadu gas (Q) berinteraksi dengan ketara dengan nilai R^2 pada lebar kimpalan (W), kedalaman penembusan kimpalan (PD), keluasan penembusan (PA) dan kesebatian kimpalan (%D).Keputusan ujian lanjutan DOE mendapati pemboleh ubah kedalaman penembusan kimpalan (PD) dan keluasan penembusan (PA)berinteraksi berkala pada pemboleh ubah arus elektrik (I) and kadar aliran isipadu gas (Q). Akhir sekali, untuk ujian kekerasan pada permukaan kimpalan mendapati tahap kekerasan pada sampel pilihan memadahi dengan tahap kekerasan keluli karbon kimpalan SMAW.

ACKNOWLEDGEMENTS

All praises to GOD the Almighty for giving me the strength, guidance and patience in completing this thesis. My deepest appreciation goes to Dr. Thiru Chitrambalam for being a very helpful supervisor for this project. His valuable suggestion and encouragement have enabled me to handle this project with confidence. I would also like to express my gratitude Deputy Dean (Research and Graduate studies), Dr. Abd Rahman bin Dullah for his guidance and knowledge throughout my research progress.

I would like to extend my appreciation to all lecturers, technicians from (FKM, FTK and FKP) and administrative staffs in the department for their invaluable assistance. For the financial support, I gratefully acknowledge Universiti Teknikal Malaysia Melaka (UTeM) for thefinancial and infrastructure support provided throughout this research under the FRGS/2011/FKM/TK01/02/4 F00139 research fund.

I would like to thank the Ministry of Higher Education and the Malaysia Government for funding my Master's fees under the MYBRAIN 15 program. I would also like to thank the Faculty of Technology Engineering (FTK-UTeM), Faculty of Manufacturing Engineering (FKP-UTeM), Megasteel Sdn Bhd and Sirim Sdn Bhd (NDT division and Welding testing laboratory) for providing me the research facilities. I would like to take this opportunity to thank my FKM (UTeM) research colleagues Sadiq Aziz, Tan Beng Hong, Sivanganam and Sean John Mathew for their outstanding support and knowledge sharing throughout my research.Last but not least, my deepest appreciation goes to my father; Selvam Gangan , my mother; Letchumy Moonian, my siblings ;S.Pubalan, S.Saraswathy , S.Sandran , S.Selvi , S.Suresh , S.Priya and my wife Thevimalar Manogaran. Their love and support have given me the strength and spirit to the completion of this thesis. Thank you so much.

TABLE OF CONTENTS

DECLARATION	PAGE
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	xi
LIST OF APPENDICES	xix
LIST OF ABBREVIATIONS & SYMBOLS	XX
LIST OF PUBLICATION	xxvii

CH	APTE	R	
1.	INTI	RODUCTION	1
	1.1	Background of study	1
	1.2	Problem statement	3
	1.3	Research objectives	4
	1.4	Scope of research	4
	1.5	Structure and layout of thesis	5
2.	LITI	ERATURE REVIEW	7
	2.1	Shielded metal arc welding (SMAW)	7
	2.2	Welding electrode	9
	2.3	Type of flux coating	12
	2.4	Nature of cellulose material and in welding applications	16
		2.4.1 Background of cellulose material	16
		2.4.2 Characteristic of coated Cellulose welding electrode	18
	2.5	The problem of cellulose coated electrode in fusion welding	
		process	20
		2.5.1 Hydrogen induced cold cracking (HICC)	20
	2.6	Summary	28
3.	EXP	ERIMENT SETUP	30
	3.1	Introduction	30
	3.2	MOSMAW universal electrode holder	32
	3.3	Prototype of modified electrode holder	32
	3.4	Actual / workable tool electrode holder	34
	3.5	Consumable tubular coated flux electrode	37
	3.6	Experimental setup	39
	3.7	The arc initiation of MOSMAW process in the machine	
		automation	41
	3.8	Sample preparation for the experimental work	44
	3.9	Metallographic sample preparation	46

	3.9.1 Wel	d bead and geometry measurement	47
3.10	Micro hardnes	s testing	48
3.11	Microstructure	e analysis	50
	3.11.1 Sam	ple preparation of microstructure analysis	50
	3.11.2 Mac	cro etching and microstructure image viewing	52
3.12	Destructive tes	sting	54
	3.12.1 Ten	sile test and bending test	54
3.13	Non-destructiv	ve Testing	6.
	3.13.1 Liqu	aid penetration (PT)	6.
	3.13.2 Rad	iographic testing (RT)	6
3.14	-	tron microscopy (SEM), Electron diffraction	
		-ray diffraction (XRD)	6
3.15		erature measurement	70
3.16		l fluid dynamic analysis for internal flow in the	
	tubular weldin		7
		n of investigation	7.
		shing analysis on the simulation model	74
		ermination of input data for simulation	7:
3.17	• 1	eriment for MOSMAW process	7
		d parameter selection using screening test	7
	-	ponse Surface Methodology	8
	3.17.3 Dev mod	elopment of Design matrix and Mathematical	8
3.18	Summary		8
RES		ISCUSSION OF FLUID FLOW ANALYSIS R WELDING ELECTRODE	8
RES IN 7 4.1	THE TUBULA Introduction	R WELDING ELECTRODE	8
RES IN 7	THE TUBULA Introduction		8 8
RES IN 7 4.1	THE TUBULA Introduction	R WELDING ELECTRODE	8 8
RES IN 7 4.1 4.2 4.3	THE TUBULA Introduction 2D Asymmetr Summary	R WELDING ELECTRODE	8 8 1
RES IN 7 4.1 4.2 4.3	THE TUBULA Introduction 2D Asymmetr Summary	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS	8 8 1 1
RES IN 1 4.1 4.2 4.3 RES	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS	8 8 1 1 1
RES IN 7 4.1 4.2 4.3 RES	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship	8 8 1 1 1 1
RES IN 7 4.1 4.2 4.3 RES 5.1	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND DI Preliminary in 5.1.1 Inves	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship	8 8 1 1 1 1 1
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in 5.1.1 Inves Microhardness	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship a analysis	8 8 1 1 1 1 1 1
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND DI Preliminary in 5.1.1 Inves Microhardness Microstructure Non-destructive	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship a analysis	8 8 1 1 1 1 1 1 1 1
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3 5.4	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in 5.1.1 Inves Microhardness Microstructure Non-destructive Mechanical test	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship s e analysis ve testing	8 8 1 1 1 1 1 1 1 1 1
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3 5.4	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in 5.1.1 Inves Microhardness Microstructure Non-destructive Mechanical test	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship e analysis ve testing sting on the welded joints in the MOSMAW process le test	8 8 1 1 1 1 1 1 1 1 1 1 1
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3 5.4	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND DI Preliminary in 5.1.1 Inves Microhardness Microstructure Non-destructive Mechanical ter 5.5.1 Tensi 5.5.2 Bend	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship e analysis ve testing sting on the welded joints in the MOSMAW process le test	89 89 10 10 10 10 10 10 11 11 11 11 11
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3 5.4	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in 5.1.1 Inves Microhardness Microstructure Non-destructive Mechanical tes 5.5.1 Tensi 5.5.2 Bend 5.5.3 Fractor	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship analysis e analysis ve testing sting on the welded joints in the MOSMAW process le test test	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3 5.4 5.5	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in 5.1.1 Inves Microhardness Microstructure Non-destructiv Mechanical tes 5.5.1 Tensi 5.5.2 Bend 5.5.3 Fractiv Weld element	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship a analysis ve testing sting on the welded joints in the MOSMAW process le test test ure surface and behavior of weld	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3 5.4 5.5	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in 5.1.1 Inves Microhardness Microstructure Non-destructive Mechanical ter 5.5.1 Tensi 5.5.2 Bend 5.5.3 Fractu Weld element Weld arc temp	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship e analysis ve testing sting on the welded joints in the MOSMAW process le test test ure surface and behavior of weld analysis of MOSMAW process	88 89 10 10 10 10 10 10 10 10 10 10
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3 5.4 5.5 5.6 5.7	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in 5.1.1 Inves Microhardness Microstructure Non-destructive Mechanical ter 5.5.1 Tensi 5.5.2 Bend 5.5.3 Fracture Weld element Weld arc temp Design of expo	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship a analysis ve testing sting on the welded joints in the MOSMAW process le test test ure surface and behavior of weld analysis of MOSMAW process berature measurement	89 89 10 10 10 10 10 10 10 10 10 10 10 10 11 11
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3 5.4 5.5 5.6 5.7	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in 5.1.1 Inves Microhardness Microstructure Non-destructive Mechanical ter 5.5.1 Tensi 5.5.2 Bend 5.5.3 Fractive Weld element Weld element Weld arc temp Design of expo 5.8.1 Weld 5.8.2 Penet	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship a analysis e analysis ve testing sting on the welded joints in the MOSMAW process le test test ure surface and behavior of weld analysis of MOSMAW process berature measurement eriment (DOE) bead width (<i>W</i>) ration depth (<i>PD</i>)	89 89 10 10 10 10 10 10 10 10 10 10 10 10 10
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3 5.4 5.5 5.6 5.7	THE TUBULAI Introduction 2D Asymmetr Summary ULTS AND D Preliminary in 5.1.1 Inves Microhardness Microstructure Non-destructive Mechanical tea 5.5.2 Bend 5.5.3 Fractor Weld element Weld arc temp Design of expo 5.8.1 Weld 5.8.2 Penet 5.8.3 Penet	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship a analysis ve testing sting on the welded joints in the MOSMAW process le test test ure surface and behavior of weld analysis of MOSMAW process berature measurement eriment (DOE) bead width (<i>W</i>) ration depth (<i>PD</i>) ration Area (<i>PA</i>)	89 89 10 10 10 10 10 10 10 10 10 10 10 10 10
RES IN 7 4.1 4.2 4.3 RES 5.1 5.2 5.3 5.4 5.5 5.6 5.7	THE TUBULAI Introduction2D AsymmetrSummary ULTS AND D Preliminary in5.1.1 InvesMicrohardnessMicrohar	R WELDING ELECTRODE ical model of fluid flow simulation ISCUSSION OF THE MOSMAW PROCESS vestigation tigation of weld bead geometry and relationship a analysis e analysis ve testing sting on the welded joints in the MOSMAW process le test test ure surface and behavior of weld analysis of MOSMAW process berature measurement eriment (DOE) bead width (<i>W</i>) ration depth (<i>PD</i>)	89 89 10 10 10 10 10 10 10 10 10 10 10 10 11 11

4.

5.

	5.10	0 Summary	162
6.	CON	ICLUSION AND RECOMMENDATION	166
	6.1	Conclusion	166
	6.2	Recommendation	169

REFERENCE	170
APPENDICES	199

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Main flux coating ingredients and their function	12
2.2	Estimated composition of Lingnocellulosic Feed stock	17
2.3	Chemical composition of some typical of some typical	
	cellulose containing material	18
2.4	The welding electrode classification based on AWS	18
2.5	The moisture content in the raw material of consumable	
	electrodes	24
3.1	Chemical composition, weight (%) of high cellulose flux	
	coating (E6010)	38
3.2	Chemical composition, weight (%) of tubular electrode rutile	
	flux coating (E6013)	38
3.3	Chemical composition, weight (%) of tubular electrode	
	low hydrogen coating (E7018)	38
3.4	Chemical composition, weight (%) of mild solid rod (E6010)	38
3.5	Chemical composition, weight (%) of tubular mild solid rod	
	E6013 and E7018	38

Chemical composition of base metal	45
Consumable SMAW electrode storage and drying	
temperature	58
The calculated input control variables and the resulted	
flow characteristics for Argon gas (Ar)	77
The calculated input control variables and the resulted	
flow characteristics for Helium gas (He)	78
The calculated input control variables and the resulted	
flow characteristics for Carbon dioxide gas(CO ₂)	79
Process control parameters and limits	78
The measurement of Speed and Feed rate	80
The factorial test result on the selected factors and the	
obtained response	81
The experimental parameter for Response surface method	82
Experimental Design matrix	85
The simulation result for Argon	90
The simulation result for Helium	91
The simulation result for Carbon dioxide	91
The input parameter and variables for bead geometry	
relationship investigation	101
Result of weld bead geometry measurement by applying	
Rutile covering (E6013) tubular electrode	102
Result of weld bead geometry measurement by applying low	
hydrogen (E7018) covering tubular electrode	103
Result of penetration testing on MOSMAW process with	
	Consumable SMAW electrode storage and drying temperature The calculated input control variables and the resulted flow characteristics for Argon gas (Ar) The calculated input control variables and the resulted flow characteristics for Helium gas (He) The calculated input control variables and the resulted flow characteristics for Carbon dioxide gas(CO ₂) Process control parameters and limits The measurement of Speed and Feed rate The factorial test result on the selected factors and the obtained response The experimental parameter for Response surface method Experimental Design matrix The simulation result for Argon The simulation result for Argon The simulation result for Carbon dioxide The simulation result for Carbon dioxide Carbon dioxide The simulation result for Carbon dioxide Result of weld bead geometry measurement by applying Rutile covering (E6013) tubular electrode Result of weld bead geometry measurement by applying low Hydrogen (E7018) covering tubular electrode

	Tubular welding electrode (Rutile covering electrode) E6013	116
5.5	Result of penetration testing on MOSMAW process with	
	Tubular welding electrode (Low hydrogen electrode) E7018	116
5.6	Result of Radiographic testing on the welded samples	
	from MOSMAW process with solid rod electrode E6010,	
	and flux covered tubular electrode E6013 and E7018.	118
5.7	Result of tensile test on the welded samples from	
	MOSMAW process	120
5.8	Location of fracture in the welded samples on the	
	MOSMAW process with and without fed gases supply	124
5.9	Results of bend test on welded samples of MOSMAW	
	process with and without feed gas	126
5.10	Chemical composition of weld metal for conventional	
	cellulose stick electrode	130
5.11	Chemical composition of weld metal for rutile covering	
	(tubular electrode)	130
5.12	Chemical composition of weld metal for rutile covering	
	feded with Argon gas (tubular electrode)	130
5.13	Chemical composition of weld metal for rutile covering feded	
	with Helium gas (tubular electrode)	130
5.14	Temperature measurement using OPTEX Portable Thermo-Hunter	133
5.15	Temperature measurement using OPTEX Portable Thermo-	
	Hunter on multiple weld parameters	134
5.16	ANOVA results for Weld bead width (W)	135
5.17	Estimation regression coefficient for Weld bead width (W)	136

5.18	ANOVA results for Penetration depth (PD)	141
5.19	Estimation regression coefficient for Penetration depth (PD)	142
5.20	ANOVA results for Penetration Area (PA)	146
5.21	Estimation regression coefficient for Penetration Area (PA)	147
5.22	ANOVA results for Percentage of dilution (%D)	152
5.23	Estimation regression coefficient for Percentage of dilution (% D)	153
5.24	Selection of DOE samples for further investigation	158

LIST OF FIGURES

FIGURE	E TITLE	PAGE
1.1	The propagation of crack at weld region due to HICC	2
2.1	Shielded metal arc welding process, SMAW	7
2.2	Flux coated electrode of SMAWrocess	10
2.3	Types of flux covering of SMAW consumable electrode	14
2.4	Scheme of hierarchical levels of the structure organization of	
	wood cellulose	16
2.5	The three condition influencing formation of HICC in weld	21
2.6	The interaction of of stress and hydrogen content with cooling	
	temperature after welding process	22
2.7	The formation of hydrogen from the consumable electrode	
	on SMAW and FCAW	23
2.8	The chronology of hydrogen diffusion in weld region	23
2.9	Illustration of hydrogen in the weldment during welding process	26
2.10	The hydrogen concentration of diffusion in weld metal	
	and HAZ region	27
3.1	Flow chart of experimental work on MOSMAW process	31
3.2	The prototype fabrication work	33
3.3	The complete assemble of all components and also fitted with	
	the newly developed tubular electrode	33

3.4	Fabrication of actual workable model of modified electrode	
	holder MOSMAW	34
3.5	The fabricated components (a) and the pre-assembly of	
	components (b)	35
3.6	Full view of modified electrode holder and tubular welding	
	electrode for machine automation MOSMAW process	36
3.7	The developed tubular welding electrode for the experimental work	37
3.8	The setup of fabricated electrode holder with milling machine	
	spindle connector (a) into conventional milling machine (b)	39
3.9	Work piece jig holder (a) installed with square plywood	
	underneath (b)	39
3.10	Rubber insulation installation on connecting nut and bolt	40
3.11	The schematic diagram of arc initiation by using graphite rod	41
3.12	Schematic diagram for MOSMAW experimental setup	42
3.13	Conventional Milling machine variable speed motors	43
3.14	Overview of experimental setup in conventional milling machine	44
3.15	Work piece cutting (a) on band saw machine (b)	45
3.16	Metallographic sample preparation	46
3.17	Hot press mounting (a) hot mounted press sample (b)	46
3.18	Dino –lite digital macrographs capture device for weld bead	
	geometry measurement	47
3.19	Captured macrograph image from Dinocapture 2.0	48
3.20	Vickers hardness press (a) mounted sample positioning (b)	49
3.21	Microhardness indentation region on test sample	50
3.22	Grinding process on mounted sample	51

3.23	Polishing process with text, nap and micro cloth pad on	
	polishing machine	52
3.24	Zeiss upright microscopy with image charactrization software	54
3.25	Schematic diagram of manual MOSMAW process	55
3.26	Butt joint with Single V-groove chanfering	56
3.27	V-groove angle chamfering milled machining work with	
	inclination jig	56
3.28	Welding passes on the single V-groove butt joint	57
3.29	Sample cutting process with high pressure abrasive water jet	
	machine	58
3.30	Tensile test, sample dimension (mm) and specification	59
3.31	Bending test, sample dimension (mm) and specification	59
3.32	Tensile test final sample	60
3.33	Bending test final sample	60
3.34	Electrical furnace	61
3.35	Universal tensile test machine (UTM)	62
3.36	Guided face bend test	63
3.37	PT testing procedure	64
3.38	The testing procedure of Penetration test	64
3.39	Radiation room (a), Radiation generator (b) and sample	
	placement on radiographic film (c)	66
3.40	Fluorescence light was used inside dark room for radiation	
	film development.	67
3.41	Films developing process in the dark room	67
3.42	Radiographic viewer for imaging the defect	68

SEM, EDX (a) and XRD test machine (b)	69
Weld element spotted on three spectrum	70
The schematic diagram instrument setup for weld arc measurement	70
Tubular welding technique and (b) internal flow characteristic in	
the tube	71
The theory of gas flow in the tubular welding electrode	72
The manufactured tubular welding electrode and Schematic diagram	
of tubular welding electrode with boundary region/condition in	
axisymmetric geometry for 2D	74
The simulation contour (a) and vector (b) illustration of fluid flow	
in the 1.8 mm tubular welding electrode in axisymmetric orientation	92
The entrance length development on the axisymnetric model at	
Q = 2.0 l/min of Helium gas	93
The velocity flow contour image of Helium gas at volume flow	
rate 2.0 l/min	94
Pressure variation at the wall boundary on the axial distance	
(340 mm) of the simulation model in the Laminar flow.	95
Velocity profile of maximum velocity of Helium gas at outlet	
boundary region with varies range of volume flow rate,Q (L/min)	96
Velocity profile of maximum velocity of Argon gas at	
outlet boundary region with varies range of volume	
flowrate,Q (L/min)	97
Velocity profile of maximum velocity of Carbon dioxide gas at	
outlet boundary region with varies range of volume flow	
rate,Q (L/min)	98
	 Weld element spotted on three spectrum The schematic diagram instrument setup for weld arc measurement Tubular welding technique and (b) internal flow characteristic in the tube The theory of gas flow in the tubular welding electrode The manufactured tubular welding electrode and Schematic diagram of tubular welding electrode with boundary region/condition in axisymmetric geometry for 2D The simulation contour (a) and vector (b) illustration of fluid flow in the 1.8 mm tubular welding electrode in axisymmetric orientation The entrance length development on the axisymmetric model at Q = 2.0 l/min of Helium gas The velocity flow contour image of Helium gas at volume flow rate 2.0 l/min Pressure variation at the wall boundary on the axial distance (340 mm) of the simulationmodel in the Laminar flow. Velocity profile of maximum velocity of Argon gas at outlet boundary region with varies range of volume flowrate,Q (L/min) Velocity profile of maximum velocity of Carbon dioxide gas at outlet boundary region with varies range of volume flow

4.8	Validation of CFD Simulation with analytical result of	
	velocity outlet (Vout) fluid flow analysis on the 1.8 mm diameter	
	of axisymmetrical model	99
5.1	Macrograph images of weld bead geometry on welded samples	
	of rutile coated (E6013) and Low hydrogen coated tubular	
	welding electrode (image scale :1mm)	102
5.2	Weld penetration depth for E6013 tubular rutile covered electrode	104
5.3	Weld penetration depth for E7018 tubular low hydrogen	
	covered electrode	104
5.4	Penetration area for E6013 tubular rutile covered e electrode	105
5.5	Penetration area for E7018 tubular low hydrogen covered electrode	106
5.6	The result of XRD on E7018 low hydrogen powder of tubular	
	covered electrode	107
5.7	The microhardness profile of on conventional electrode (E6010)	
	and tubular flux coating electrodes (E6013 and E7018) without	
	feed gas	109
5.8	The hardness HV of on tubular electrode type rutile covering	
	and feded gases such Argon and Helium gas	110
5.9	Weld region at (a) Base metal, (b) HAZ and (c) Weld metal of	
	welded sample using conventional stick E6010 high	
	cellulose electrode	111
5.10	The micrographs of heat affected zone (HAZ) on rutile (E6013)	
	and low hydrogen (E7018) in tubular welding electrode with	
	and without gas supply	112
5.11	The weld metal on rutile (E6013) and low hydrogen (E7018)	

	in covered tubular welding electrode with and without gas supply	113
5.12	Image of penetration tested welded samples with developer	
	coating for (a) E6010 -solid electrode (high cellulose electrode),	
	(b) E6013-Rutile flux coated and (c) E7018 -Low hydrogen	
	coated tubular electrode with Argon and Helium as orifice gases.	115
5.13	The defect formation on the weld surface on low hydrogen	
	tubular electrode, E7018 with Argon as orifice gas indicated in	
	(A till F)	117
5.14	Images captured from RT films from Radiographic testing on	
	the welded samples	119
5.15	Tensile stress vs strain of welded joint.	121
5.16:	Tensile stress vs strain	122
5.17	Fracture mode on the welded sample after tensile test.	123
5.18	Lack of fusion (LOF) at the hard pass on welded joint.	125
5.19	All guided bend test samples (a) and cracked sample (b)	126
5.20	Plastic behavior region from obtained tensile test result	127
5.21	High cellulose electrode - E6010	128
5.22	Tubular rutile flux coated electrode with Argon feded	
	gas – E6013 (Ar)	129
5.23	Tubular rutile flux coated electrode with Helium feded	
	gas – E6013 (He)	129
5.24	Tubular low hydrogen flux coated electrode with Argon feded	
	gas – E7018 (Ar)	129
5.25	Tubular low hydrogen flux coated electrode with Helium feded	
	gas – E7018 (He)	129

5.26	Element composition at Weld metal using rutile flux covering	
	of tubular electrode with Helium gas	131
5.27	Element composition at HAZ using rutile flux covering of	
	tubular electrode with Helium gas	131
5.28	Element composition at Base metal using rutile flux covering	
	of tubular electrode with Helium gas	132
5.29	Interaction effect of welding current (I) and electrode travel	
	speed (S) on bead width	137
5.30	Interaction effect of electrode travel speed (S) and electrode	
	travel feedrate (F) on bead width	138
5.31	Interaction effect of welding current (I) and Gas volume flow rate	
	(Q) on bead width	139
5.32	Prediction vs observed value on width of bead geometry	140
5.33	Interaction effect of welding current (I) and Feed rate (F)	
	on Penetration depth	143
5.34	Interaction effect of welding current (I) and Gas volume flow rate	
	(Q) on Penetration depth	144
5.35	Prediction vs observed value on Penetration depth of bead geometry	145
5.36	Interaction effect of current (I) and Speed (S) on Penetration area	148
5.37	Interaction effect of current (I) and Feed rate (F) on Penetration area	149
5.38	Interaction effect of speed (S) and Feed rate (F) on Penetration area	149
5.39	Interaction effect of current (I) and volume flow rate of helium	
	gas (Q) on Penetration area	150
5.40	Prediction vs observed value on Penetration area of bead geometry	151
5.41	Interaction effect of Current (I) and Speed (S) on Percentage	

	of Dilution (%D)	153
5.42	Interaction effect of Current (I) and Feed rate (F) on Percentage	
	of Dilution (%D)	155
5.43	Interaction effect of Current (I) and volume flow rate of helium	
	gas (Q) on Percentage of Dilution (% D)	155
5.44	Prediction vs observed value on Percentage of dilution of bead	
	geometry	157
5.45	The relationship of welding current of 100 amps and volume	
	flow rate (Q)	159
5.46	The relationship of welding current of 125 amps and volume	
	flow rate (Q)	159
5.47	The relationship of welding current of 150 amps and volume	
	flow rate (Q)	160
5.48	The micro hardness profile at 100 Amps with max and min	
	volume flow rate (Q)	161
5.49	The micro hardness profile at 125 Amps with max and min	
	volume flow rate (Q)	161
5.50	The micro hardness profile at 150 Amps with max and min	
	volume flowrate (Q)	162

LIST OF APPENDICES

NO.APPENDIX	TITLE	PAGE
А	RSM – Minitab result	199
В	MOSMAW Electrode holder tools drawing	211