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Abstract—Electromyography (EMG) is widely 
used in controlling the signal in manipulating 
the robot assisted rehabilitation. In order to 
manipulate a more accurate robot assisted, 
the feature extraction and selection were 
equally important. This study evaluated 
the performance of time domain (TD) 
and frequency domain (FD) features in 
discriminating EMG signal. To investigate the 
features performance, the linear discriminate 
analysis (LDA) was introduced. The present 
study showed that the FD features achieved the 
highest accuracy of 91.34% in LDA. The results 
were verified by LDA classifier and FD features 
showed best classification performance in 
EMG signal classification application.

Index Terms—Electromyography (EMG), time 
domain (TD), frequency domain (FD) and linear 
discriminant analysis (LDA)

I.  INTRODUCTION

W	orld Health Organization (WHO)  
	 indicated stroke had become threatening 
and bring 6.24 million of death to the world in 
2015. Majority of stroke survivors faced long 
term disabilities of upper limb function [1]. 
Therefore, rehabilitation is required for stroke 
patients in order to regain their limb abilities. 

Today, electromyography (EMG) is widespread 
and widely used in rehabilitation. 
	 EMG involved the analysis of the electrical 
activity of the muscle when there is muscle 
contraction [2]. Previous study stated most of 
researcher make use of surface EMG (sEMG) 
to evaluate the muscle performance [3]–[5]. 
Recently, researcher focused on the feature 
extraction of EMG signal [6], [7]. Feature 
extraction is a method to extract the useful 
information from surface EMG and reduce the 
presence of artifact. In addition, previous studies 
showed that the feature selection was important 
in achieve higher classification accuracy in EMG 
pattern recognition [6], [7].
	 The purpose of this paper is to investigate 
the performance of features extracted from EMG 
signal. This study compared the performance of 
time domain (TD) and frequency domain (FD) 
features. TD features were simple and efficient 
in EMG pattern recognition [6], [8]. On the other 
hand, FD features were used to estimate the 
EMG power spectrum in frequency form [5], 
[9]. To evaluate the feature performance, linear 
discriminant analysis (LDA) is use to classify 
the EMG pattern. Previous studies indicated the 
highest classification, illustrated the best feature 
performance in discriminating EMG signal 
[10]–[12].
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II.  METHODOLOGY
Data Collection
	 Ten subjects, 8 males and 2 females, aged 
between 23 to 47 years were participating in the 
data acquisition. Subjects were right-handed 
and in healthy condition. Additionally, subjects 
have no history of accident on dominant hand. 
At the beginning of the experiment, there is a pre-
experiment. Subjects’ hair was removed in order 
to reduce the presence of noise. Then, the BD 
alcohol swab of 70% isorophyl alcohol was used 
to clean the surface of the skin. The Shimmer 
EMG sensor was used in data acquisitions. 
Additionally, Shimmer EMG sensor is a small 
and wearable device. Shimmer EMG device 
configuration was followed shimmer manual 
guideline. The gain of 12 was used and the 
current supply was set as 6uA. Besides, the 
sampling frequency was set as 512Hz with 
resolution of 16 bits. A high pass filter with 5Hz 
cut-off frequency was implemented.
	 The flexor carpi radialis (ch1) and flexor 
pollicis longus (ch2) were selected to evaluate 
multiple hand movement with two reference 
electrodes at the elbow. The anatomy of selected 
muscle was shown in Fig. 1. Then, the Ag/AgCL, 
30 mm diameter EMG electrodes were placed on 
the selected muscles. The electrode placement 
was referring to Non-Invasive Assessment 
of Muscle (SENIAM) guideline. The distance 
between electrode-pairs is set as 20mm. 
	 In the experiment, subjects were required 
to sit on the chair comfortable with hand in 
neutral position. Then, subjects performed 
six hand movement’s task including thumb 
extension (TE), thumb flexion (TF), index finger 
curl (FI), middle finger curl (FM), ring finger 
curl (FR) and pinkie finger curl (FL) as shown in 
Fig. 2. These movements were followed by the 
FlintRehab Exercise guideline [13]. 
	 Each hand movement is maintained for 
5 second and repeated for 10 times. The rest 
period of 3 second was introduced between 
each repetition. After recording, 20 EMG data 
were saved. In turn, subjects were required 
to take 1-minute rest before proceeding with 
next movement. This experimental setup was 
applied to prevent the muscle fatigue. Finally, 
20 EMG signal with duration of 5 seconds were 

collected for each hand movement. In addition, 
the rest states were removed before applying 
the feature extraction.
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Fig. 2. Hand movement task. 

A. Time Domain (TD) Feature 
Figures, The time domain (TD) feature is the feature 

extracted from EMG signal in time representation [6]. TD 
features such as mean absolute value (MAV), root mean 
square (RMS) and wavelength (WL) were most popular in 
EMG pattern recognition due to high processing speed in 
classification. MAV is defined as the average of total absolute 
value of EMG signal [6], [14]. It can be calculated as: 
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WL is an improvement of integrated EMG feature. Besides, 
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B. Frequency Domain (FD) Feature 
 References Frequency domain feature illustrated the EMG 

signal power spectrum density (PSD) in frequency 
representation [6]. FD features such as the mean frequency 
(MNF), median frequency (MDF) and frequency ratio (FR) 
were required more computed time as compared to TD 
features. In addition, FD features commonly used in muscle 
fatigue and muscle force estimation [5]. The MNF is the 
average frequency at which the sum of product of the EMG 
power spectrum and the frequency divided by total [5], [6]. It 
can be expressed as: 
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where Pj is the power spectrum and M is the length of PSD. 
The MDF is the frequency at which the EMG power spectrum 
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where ULC and LLC are the upper and lower cutoff frequency 
at low frequency band and UHC and LHC are the upper and 
lower cutoff frequency at high frequency band.   

C.  Linear Discriminant Analysis (LDA) 
In this work, the training data set with 10 repetitions of each 

hand movement totaling 1200 EMG signals was computed. 
This study compared TD features and FD features to evaluate 
the features performance. The classier, LDA was utilized to 
classify the EMG pattern based on six classes. Linear 
discriminant analysis (LDA) is one of the robust classifier and 
it is good in reducing the dimensionality of features without 
separating the classes [17]. Meanwhile, LDA Previous studies 
indicated LDA was simple and it showed high classification 
performance [6], [17], [18]. The LDA was performed by using 

Fig. 1.  Anatomy of selected muscle [5].
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segment [6], [16]. It can be represented as: 
 
		              

International Journal of Human and Technology Interaction (IJHaTI), Vol. 1, No. 1, 31 October 2017 
 

ISSN: 2590-3551 
 

2 

between electrode-pairs is set as 20mm.  
In the experiment, subjects were required to sit on the chair 

comfortable with hand in neutral position. Then, subjects 
performed six hand movement’s task including thumb 
extension (TE), thumb flexion (TF), index finger curl (FI), 
middle finger curl (FM), ring finger curl (FR) and pinkie 
finger curl (FL) as shown in Fig. 2. These movements were 
followed by the FlintRehab Exercise guideline [13].  

Each hand movement is maintained for 5 second and 
repeated for 10 times. The rest period of 3 second was 
introduced between each repetition. After recording, 20 EMG 
data were saved. In turn, subjects were required to take 1-
minute rest before proceeding with next movement. This 
experimental setup was applied to prevent the muscle fatigue. 
Finally, 20 EMG signal with duration of 5 seconds were 
collected for each hand movement. In addition, the rest states 
were removed before applying the feature extraction. 

 

 
Fig. 1. Anatomy of selected muscle [5]. 

 
Fig. 2. Hand movement task. 

A. Time Domain (TD) Feature 
Figures, The time domain (TD) feature is the feature 

extracted from EMG signal in time representation [6]. TD 
features such as mean absolute value (MAV), root mean 
square (RMS) and wavelength (WL) were most popular in 
EMG pattern recognition due to high processing speed in 
classification. MAV is defined as the average of total absolute 
value of EMG signal [6], [14]. It can be calculated as: 

1

1 | |
N

i
i

MAV x
N 

 
 

(1) 

RMS is the amplitude modulated Gaussian random process 
related to muscle force and contraction [6], [15]. It can be 
defined as: 

2

1

1 N

i
i

RMS x
N 

 
 

(2) 

WL is an improvement of integrated EMG feature. Besides, 
WL is also defined as the cumulative length of waveform over 
the segment [6], [16]. It can be represented as:  

1

1
1

| |
N

i i
i

WL x x





 
 

(3) 

B. Frequency Domain (FD) Feature 
 References Frequency domain feature illustrated the EMG 

signal power spectrum density (PSD) in frequency 
representation [6]. FD features such as the mean frequency 
(MNF), median frequency (MDF) and frequency ratio (FR) 
were required more computed time as compared to TD 
features. In addition, FD features commonly used in muscle 
fatigue and muscle force estimation [5]. The MNF is the 
average frequency at which the sum of product of the EMG 
power spectrum and the frequency divided by total [5], [6]. It 
can be expressed as: 

1

M

j
j

MNP P M



 

(4) 

where Pj is the power spectrum and M is the length of PSD. 
The MDF is the frequency at which the EMG power spectrum 
is divided equally into two regions [5], [6]. It can be 
represented as:   

1

1
2

M

j
j

MDF P


 
 

(5) 

 The FR is designed to distinguish the difference between 
contraction and relaxation of muscle in frequency 
representation [6]. It can be calculated as: 

ULC UHC

j j
j LLC LHC

FR P P


  
 

(6) 

where ULC and LLC are the upper and lower cutoff frequency 
at low frequency band and UHC and LHC are the upper and 
lower cutoff frequency at high frequency band.   

C.  Linear Discriminant Analysis (LDA) 
In this work, the training data set with 10 repetitions of each 

hand movement totaling 1200 EMG signals was computed. 
This study compared TD features and FD features to evaluate 
the features performance. The classier, LDA was utilized to 
classify the EMG pattern based on six classes. Linear 
discriminant analysis (LDA) is one of the robust classifier and 
it is good in reducing the dimensionality of features without 
separating the classes [17]. Meanwhile, LDA Previous studies 
indicated LDA was simple and it showed high classification 
performance [6], [17], [18]. The LDA was performed by using 

	                 (3)

B.	 Frequency Domain (FD) Feature
 	 References Frequency domain feature 
illustrated the EMG signal power spectrum 
density (PSD) in frequency representation [6]. 
FD features such as the mean frequency (MNF), 
median frequency (MDF) and frequency ratio 
(FR) were required more computed time as 
compared to TD features. In addition, FD 
features commonly used in muscle fatigue and 
muscle force estimation [5]. The MNF is the 
average frequency at which the sum of product 
of the EMG power spectrum and the frequency 
divided by total [5], [6]. It can be expressed as:
 
		               

International Journal of Human and Technology Interaction (IJHaTI), Vol. 1, No. 1, 31 October 2017 
 

ISSN: 2590-3551 
 

2 

between electrode-pairs is set as 20mm.  
In the experiment, subjects were required to sit on the chair 

comfortable with hand in neutral position. Then, subjects 
performed six hand movement’s task including thumb 
extension (TE), thumb flexion (TF), index finger curl (FI), 
middle finger curl (FM), ring finger curl (FR) and pinkie 
finger curl (FL) as shown in Fig. 2. These movements were 
followed by the FlintRehab Exercise guideline [13].  

Each hand movement is maintained for 5 second and 
repeated for 10 times. The rest period of 3 second was 
introduced between each repetition. After recording, 20 EMG 
data were saved. In turn, subjects were required to take 1-
minute rest before proceeding with next movement. This 
experimental setup was applied to prevent the muscle fatigue. 
Finally, 20 EMG signal with duration of 5 seconds were 
collected for each hand movement. In addition, the rest states 
were removed before applying the feature extraction. 

 

 
Fig. 1. Anatomy of selected muscle [5]. 

 
Fig. 2. Hand movement task. 

A. Time Domain (TD) Feature 
Figures, The time domain (TD) feature is the feature 

extracted from EMG signal in time representation [6]. TD 
features such as mean absolute value (MAV), root mean 
square (RMS) and wavelength (WL) were most popular in 
EMG pattern recognition due to high processing speed in 
classification. MAV is defined as the average of total absolute 
value of EMG signal [6], [14]. It can be calculated as: 

1

1 | |
N

i
i

MAV x
N 

 
 

(1) 

RMS is the amplitude modulated Gaussian random process 
related to muscle force and contraction [6], [15]. It can be 
defined as: 

2

1

1 N

i
i

RMS x
N 

 
 

(2) 

WL is an improvement of integrated EMG feature. Besides, 
WL is also defined as the cumulative length of waveform over 
the segment [6], [16]. It can be represented as:  

1

1
1

| |
N

i i
i

WL x x





 
 

(3) 

B. Frequency Domain (FD) Feature 
 References Frequency domain feature illustrated the EMG 

signal power spectrum density (PSD) in frequency 
representation [6]. FD features such as the mean frequency 
(MNF), median frequency (MDF) and frequency ratio (FR) 
were required more computed time as compared to TD 
features. In addition, FD features commonly used in muscle 
fatigue and muscle force estimation [5]. The MNF is the 
average frequency at which the sum of product of the EMG 
power spectrum and the frequency divided by total [5], [6]. It 
can be expressed as: 

1

M

j
j

MNP P M



 

(4) 

where Pj is the power spectrum and M is the length of PSD. 
The MDF is the frequency at which the EMG power spectrum 
is divided equally into two regions [5], [6]. It can be 
represented as:   

1

1
2

M

j
j

MDF P


 
 

(5) 

 The FR is designed to distinguish the difference between 
contraction and relaxation of muscle in frequency 
representation [6]. It can be calculated as: 

ULC UHC

j j
j LLC LHC

FR P P


  
 

(6) 

where ULC and LLC are the upper and lower cutoff frequency 
at low frequency band and UHC and LHC are the upper and 
lower cutoff frequency at high frequency band.   

C.  Linear Discriminant Analysis (LDA) 
In this work, the training data set with 10 repetitions of each 

hand movement totaling 1200 EMG signals was computed. 
This study compared TD features and FD features to evaluate 
the features performance. The classier, LDA was utilized to 
classify the EMG pattern based on six classes. Linear 
discriminant analysis (LDA) is one of the robust classifier and 
it is good in reducing the dimensionality of features without 
separating the classes [17]. Meanwhile, LDA Previous studies 
indicated LDA was simple and it showed high classification 
performance [6], [17], [18]. The LDA was performed by using 

	                 (4)

	 where Pj is the power spectrum and M is 
the length of PSD. The MDF is the frequency 
at which the EMG power spectrum is divided 
equally into two regions [5], [6]. It can be 
represented as:  
 
			 

International Journal of Human and Technology Interaction (IJHaTI), Vol. 1, No. 1, 31 October 2017 
 

ISSN: 2590-3551 
 

2 

between electrode-pairs is set as 20mm.  
In the experiment, subjects were required to sit on the chair 

comfortable with hand in neutral position. Then, subjects 
performed six hand movement’s task including thumb 
extension (TE), thumb flexion (TF), index finger curl (FI), 
middle finger curl (FM), ring finger curl (FR) and pinkie 
finger curl (FL) as shown in Fig. 2. These movements were 
followed by the FlintRehab Exercise guideline [13].  

Each hand movement is maintained for 5 second and 
repeated for 10 times. The rest period of 3 second was 
introduced between each repetition. After recording, 20 EMG 
data were saved. In turn, subjects were required to take 1-
minute rest before proceeding with next movement. This 
experimental setup was applied to prevent the muscle fatigue. 
Finally, 20 EMG signal with duration of 5 seconds were 
collected for each hand movement. In addition, the rest states 
were removed before applying the feature extraction. 

 

 
Fig. 1. Anatomy of selected muscle [5]. 

 
Fig. 2. Hand movement task. 

A. Time Domain (TD) Feature 
Figures, The time domain (TD) feature is the feature 

extracted from EMG signal in time representation [6]. TD 
features such as mean absolute value (MAV), root mean 
square (RMS) and wavelength (WL) were most popular in 
EMG pattern recognition due to high processing speed in 
classification. MAV is defined as the average of total absolute 
value of EMG signal [6], [14]. It can be calculated as: 

1

1 | |
N

i
i

MAV x
N 

 
 

(1) 

RMS is the amplitude modulated Gaussian random process 
related to muscle force and contraction [6], [15]. It can be 
defined as: 

2

1

1 N

i
i

RMS x
N 

 
 

(2) 

WL is an improvement of integrated EMG feature. Besides, 
WL is also defined as the cumulative length of waveform over 
the segment [6], [16]. It can be represented as:  

1

1
1

| |
N

i i
i

WL x x





 
 

(3) 

B. Frequency Domain (FD) Feature 
 References Frequency domain feature illustrated the EMG 

signal power spectrum density (PSD) in frequency 
representation [6]. FD features such as the mean frequency 
(MNF), median frequency (MDF) and frequency ratio (FR) 
were required more computed time as compared to TD 
features. In addition, FD features commonly used in muscle 
fatigue and muscle force estimation [5]. The MNF is the 
average frequency at which the sum of product of the EMG 
power spectrum and the frequency divided by total [5], [6]. It 
can be expressed as: 

1

M

j
j

MNP P M



 

(4) 

where Pj is the power spectrum and M is the length of PSD. 
The MDF is the frequency at which the EMG power spectrum 
is divided equally into two regions [5], [6]. It can be 
represented as:   

1

1
2

M

j
j

MDF P


 
 

(5) 

 The FR is designed to distinguish the difference between 
contraction and relaxation of muscle in frequency 
representation [6]. It can be calculated as: 

ULC UHC

j j
j LLC LHC

FR P P


  
 

(6) 

where ULC and LLC are the upper and lower cutoff frequency 
at low frequency band and UHC and LHC are the upper and 
lower cutoff frequency at high frequency band.   

C.  Linear Discriminant Analysis (LDA) 
In this work, the training data set with 10 repetitions of each 

hand movement totaling 1200 EMG signals was computed. 
This study compared TD features and FD features to evaluate 
the features performance. The classier, LDA was utilized to 
classify the EMG pattern based on six classes. Linear 
discriminant analysis (LDA) is one of the robust classifier and 
it is good in reducing the dimensionality of features without 
separating the classes [17]. Meanwhile, LDA Previous studies 
indicated LDA was simple and it showed high classification 
performance [6], [17], [18]. The LDA was performed by using 

	                 (5)

	 The FR is designed to distinguish the 
difference between contraction and relaxation 
of muscle in frequency representation [6]. It can 
be calculated as:
 
		               

International Journal of Human and Technology Interaction (IJHaTI), Vol. 1, No. 1, 31 October 2017 
 

ISSN: 2590-3551 
 

2 

between electrode-pairs is set as 20mm.  
In the experiment, subjects were required to sit on the chair 

comfortable with hand in neutral position. Then, subjects 
performed six hand movement’s task including thumb 
extension (TE), thumb flexion (TF), index finger curl (FI), 
middle finger curl (FM), ring finger curl (FR) and pinkie 
finger curl (FL) as shown in Fig. 2. These movements were 
followed by the FlintRehab Exercise guideline [13].  

Each hand movement is maintained for 5 second and 
repeated for 10 times. The rest period of 3 second was 
introduced between each repetition. After recording, 20 EMG 
data were saved. In turn, subjects were required to take 1-
minute rest before proceeding with next movement. This 
experimental setup was applied to prevent the muscle fatigue. 
Finally, 20 EMG signal with duration of 5 seconds were 
collected for each hand movement. In addition, the rest states 
were removed before applying the feature extraction. 

 

 
Fig. 1. Anatomy of selected muscle [5]. 

 
Fig. 2. Hand movement task. 

A. Time Domain (TD) Feature 
Figures, The time domain (TD) feature is the feature 

extracted from EMG signal in time representation [6]. TD 
features such as mean absolute value (MAV), root mean 
square (RMS) and wavelength (WL) were most popular in 
EMG pattern recognition due to high processing speed in 
classification. MAV is defined as the average of total absolute 
value of EMG signal [6], [14]. It can be calculated as: 

1

1 | |
N

i
i

MAV x
N 

 
 

(1) 

RMS is the amplitude modulated Gaussian random process 
related to muscle force and contraction [6], [15]. It can be 
defined as: 

2

1

1 N

i
i

RMS x
N 

 
 

(2) 

WL is an improvement of integrated EMG feature. Besides, 
WL is also defined as the cumulative length of waveform over 
the segment [6], [16]. It can be represented as:  

1

1
1

| |
N

i i
i

WL x x





 
 

(3) 

B. Frequency Domain (FD) Feature 
 References Frequency domain feature illustrated the EMG 

signal power spectrum density (PSD) in frequency 
representation [6]. FD features such as the mean frequency 
(MNF), median frequency (MDF) and frequency ratio (FR) 
were required more computed time as compared to TD 
features. In addition, FD features commonly used in muscle 
fatigue and muscle force estimation [5]. The MNF is the 
average frequency at which the sum of product of the EMG 
power spectrum and the frequency divided by total [5], [6]. It 
can be expressed as: 

1

M

j
j

MNP P M



 

(4) 

where Pj is the power spectrum and M is the length of PSD. 
The MDF is the frequency at which the EMG power spectrum 
is divided equally into two regions [5], [6]. It can be 
represented as:   

1

1
2

M

j
j

MDF P


 
 

(5) 

 The FR is designed to distinguish the difference between 
contraction and relaxation of muscle in frequency 
representation [6]. It can be calculated as: 

ULC UHC

j j
j LLC LHC

FR P P


  
 

(6) 

where ULC and LLC are the upper and lower cutoff frequency 
at low frequency band and UHC and LHC are the upper and 
lower cutoff frequency at high frequency band.   

C.  Linear Discriminant Analysis (LDA) 
In this work, the training data set with 10 repetitions of each 

hand movement totaling 1200 EMG signals was computed. 
This study compared TD features and FD features to evaluate 
the features performance. The classier, LDA was utilized to 
classify the EMG pattern based on six classes. Linear 
discriminant analysis (LDA) is one of the robust classifier and 
it is good in reducing the dimensionality of features without 
separating the classes [17]. Meanwhile, LDA Previous studies 
indicated LDA was simple and it showed high classification 
performance [6], [17], [18]. The LDA was performed by using 

               (6)

	 where ULC and LLC are the upper and 
lower cutoff frequency at low frequency band 
and UHC and LHC are the upper and lower 
cutoff frequency at high frequency band.  

C.	  Linear Discriminant Analysis (LDA)
	 In this work, the training data set with 10 
repetitions of each hand movement totaling 
1200 EMG signals was computed. This study 
compared TD features and FD features to 
evaluate the features performance. The classier, 
LDA was utilized to classify the EMG pattern 
based on six classes. Linear discriminant analysis 

(LDA) is one of the robust classifier and it is 
good in reducing the dimensionality of features 
without separating the classes [17]. Meanwhile, 
LDA Previous studies indicated LDA was simple 
and it showed high classification performance 
[6], [17], [18]. The LDA was performed by using 
a 10-fold cross validation in classification. All the 
features were separated into 10 parts and each 
part takes turns to test. At the same time, the 
remainder used for training

RESULTS AND DISCUSSION 
The sample raw EMG signal collected from 
channel 1 with six hand movements were 
illustrated in Fig. 3. In short, six hand movements 
generated different amplitude shape of EMG 
signal according to the type of hand movement. 
In order to perform frequency domain feature 
extraction, the Fast Fourier Transform (FFT) 
was utilized to represent the EMG signal in 
frequency and power form. In Fig. 4., the sample 
FFT of TF from one subject was presented.
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Fig. 3. Raw EMG signal from ch1 from a subject 

 
Fig. 4. Fast Fourier Transform of TF from ch1 of a subject 

A. Performance Evaluation 
Fig. 5. illustrates the mean classification accuracy of ten 

subjects. LDA result demonstrated that the FD features obtain 
the highest classification accuracy of 91.34% as compared to 
TD features, 87.17%. In addition, the result indicated FD 
features in discriminating the hand movements were more 
accurate compared to TD features. The difference can be 
easily compared in TABLE I and TABLE II. TABLE I and 
TABLE II illustrate the confusion matrix of TD and FD 
features across ten subjects. As seen in Table 1-2, the TF 
shows the class-wise accuracy of 78% in TD feature which is 
less than 80%. Lower classification accuracy badly affected 
the performance of prosthetic system. Therefore, FD features 
are more suitable in classifying different hand movement. 
However, the number of features is still not sufficient in 
implementing real-time prosthetic control system. In future, 
the useful technique is required in rehabilitation purpose. 

 
Fig. 5. Mean classification accuracy across ten subjects 

       TABLE 1. CONFUSION MATRIX OF TD FEATURES 

 TE TF FI FM FR FL 

TE 87% 4% 4% 0% 0% 5% 
TF 6% 78% 5% 0% 2% 9% 
FI 2% 7% 84% 4% 1% 2% 

FM 3% 3% 1% 90% 0% 3% 
FR 0% 0% 3% 0% 96% 1% 
FL 4% 3% 0% 2% 3% 88% 

 

TABLE II. CONFUSION MATRIX OF FD FEATURES 

 TE TF FI FM FR FL 

TE 87% 6% 3% 0% 0% 4% 
TF 9% 85% 2% 1% 0% 3% 
FI 3% 2% 93% 0% 0% 4% 

FM 1% 0% 0% 95% 0% 2% 
FR 0% 0% 1% 0% 99% 0% 
FL 1% 3% 3% 2% 2% 89% 

CONCLUSION 
Hand movement identification required higher classification 

accuracy for robot assisted hand to function accurately. The 
feature extraction was done on EMG signal to classify hand 
movement. This paper presented the features performance of 
TD features and FD features. The experiment results showed 
that FD features have significantly increased classification 
accuracy as compared to TD features. The advantage of FD 
features is more appropriate to the prosthetic controlled system 
in rehabilitation.  
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highest classification accuracy of 91.34% as 
compared to TD features, 87.17%. In addition, 
the result indicated FD features in discriminating 
the hand movements were more accurate 
compared to TD features. The difference can 
be easily compared in TABLE I and TABLE II. 
TABLE I and TABLE II illustrate the confusion 
matrix of TD and FD features across ten 
subjects. As seen in Table 1-2, the TF shows 
the class-wise accuracy of 78% in TD feature 
which is less than 80%. Lower classification 
accuracy badly affected the performance of 
prosthetic system. Therefore, FD features are 
more suitable in classifying different hand 
movement. However, the number of features 
is still not sufficient in implementing real-time 
prosthetic control system. In future, the useful 
technique is required in rehabilitation purpose.International Journal of Human and Technology Interaction (IJHaTI), Vol. 1, No. 1, 31 October 2017 
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