DESIGN AND ANALYSIS OF CASTING MOLD USING CAD TOOL

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) with Honours.

by

HOE LI SIM

FACULTY OF MANUFACTURING ENGINEERING
APRIL 2010
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design and Analysis of Casting Mold Using Cad Tool

SESJ PENGAJIAN: 2009/10 Semester 2

Saya HOE LI SIM

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)

☐ SULIT (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
☐ TIDAK TERHAD

__ ______________________

Disahkan oleh:

__ ______________________

Alamat Tetap:
631, Kampung Siam,
08100 Bedong,
Kedah.

Cop Rasmi:

__ ______________________

TARFIK
Pensyarah
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka

Tarikh: 11/05/2010

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby declared this entitled “Design and Analysis of Casting Mold Using Cad Tool” is the results or my own research except as cited in references.

Signature : ..

Author’s name : HOE LI SIM

Date : 11th May, 2010
This report is submitted to the faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of bachelor of Manufacturing Engineering (Manufacturing Design) with Honours. The member of the supervisory committee is as follow:

Supervisor: MR. TAUFIK
Date: ..
Stamp: ...
This project presents the design and analysis of casting mold using CAD Tool. The project basically investigated the design parameters for the casting mold and simulated the temperature and pressure on the mold. Turbocharger impeller was selected as the product of the study. Among the various types of casting techniques, investment casting process is the most suitable process to produce the turbocharger impeller. The alternative design of casting mold by investment casting was generated using CAD software. Concept scoring was prepared in order to select the suitable design for the investment casting process. Material selection of turbocharger is Aluminum Silicon Carbide. Stainless steel AISI H13 is selected as the material for the mold. The parameter for the mold design is included branch, gating, sprue and runner. Analysis was presented to the mold by using ANSYS simulation tool, in order to determine the temperature and pressure of the mold. In addition, three case studies were presented in order to compare the static pressure in different velocity and temperature of the mold design. The result showed the runner and the branch size were important to produce the molten metal flow into the mold pattern. As a result, the design of investment casting mold was proposed.
ABSTRAK

DEDICATION

This report is dedicated to my father and mother who have taught me that even the largest task can be accomplished if it is done step by step.
ACKNOWLEDGEMENT

I would like to take this opportunity to express my highest gratitude and appreciation to my supervisor Mr. Taufik for continuing supports, supervises, encouragement, patience and constructive opinions throughout this project.

I am grateful for the cooperation and guidance which are given by my friends. First of all, I really appreciate the kindness of my friends who gave me so much important information about the project and willing to help me answering my entire question without hesitation.

I am as ever, especially indebted to my parents for their love and support throughout my life. I also wish to thanks my sisters and brother for their encouragement and understanding on this project.
TABLE OF CONTENTS

Declaration .. i
Approval... ii
Abstract ... iii
Abstrak ... iv
Dedication ... v
Acknowledgement.. vi
Table Of Contents ... vii
List Of Tables ... x
List Of Figures .. xi
List Of Abbreviations ... xvii

CHAPTER 1 INTRODUCTION .. 1
 1.1 Background... 1
 1.2 Problem Statement ... 2
 1.3 Objectives ... 3
 1.4 Scope And Key Assumption ... 3
 1.5 Organization Of The Report ... 3
 1.7 Gantt Chart ... 5

CHAPTER 2 LITERATURE REVIEW .. 7
 2.1 Technology Of Casting ... 7
 2.2 Defect Of Casting .. 10
 2.3 Selection Of Casting Process .. 11
 2.3.1 Metal Casting Process Comparison ... 11
 2.4 Investment Casting .. 13
 2.4.1 Block Mold Process .. 15
 2.4.2 Ceramic Shell-Mold Process ... 16
 2.4.3 Advantages Of Investment Casting .. 16
 2.4.4 Disadvantages Of Investment Casting ... 17
 2.5 Sand Casting ... 17
2.5.1 Types Of Sand Molds ... 19
2.5.2 Sand Casting Process .. 20
2.6 Material For Investment Casting Mold And Part ... 21
2.6.1 Material For Part ... 21
2.6.2 Material For Mold .. 22
2.6.2.1 Chromium-Molybdenum-Vanadium Alloysed Steel (Aisi H13) 25
2.7 Design Development .. 29
2.7.1 Concept Generation .. 29
2.7.2 Concept Selection ... 30
2.7.2.1 Concept Screening .. 31
2.7.2.2 Concept Scoring ... 32
2.8 Heat Transfer .. 34
2.8.1 Heat Transfer Mechanism .. 34
2.8.2 Internal Energy ... 34
2.9 Design And Simulation Tool .. 35
2.9.1 Design Tool Solidworks ... 35
2.9.2 Analysis Tool Ansys ... 36

CHAPTER 3 METHODOLOGY ... 38
3.1 Introduction .. 38
3.2 Methodology ... 38
3.3 Methodology Flow Chart .. 39
3.4 Problem Analysis ... 40
3.5 Preliminary Design & Decision Analysis ... 40
3.5.1 Ideas Generation ... 41
3.5.2 Concept 1 .. 43
3.5.3 Concept 2 .. 44
3.5.4 Concept 2 .. 45
3.5.5 Concept Screening Matrix .. 46
3.5.5 Concept Scoring ... 47
3.6 Initial Concept Design Of Investment Casting Mold 48
3.6.1 Investment Casting Mold .. 48
3.6.2 Assembly For Investment Casting Mold ... 49
3.7 Material For Turbocharger And Mold .. 50
CHAPTER 4 DATA & RESULTS... 52
4.1 Introduction ... 52
4.2 Simulation Analysis With Ansys Fluent .. 52
4.2.1 Create Geometry For The Gating .. 52
4.2.2 Create Mesh For Gating ... 53
4.3 Setup The Solver And Physical Models In Ansys Fluent 58
4.4 Result ... 63
4.4.1 Case 1(a) ... 63
4.4.2 Case 1(b) ... 72
4.4.3 Case 2(a) ... 81
4.4.4 Case 2(b) ... 90
4.4.5 Case 3(a) ... 99
4.4.6 Case 3(b) ... 108
4.5 Mold Design Proposed And Details Drawing 117

CHAPTER 5 DISCUSSION.. 122
5.1 Comparison Between The Simulation Result 122
5.2 Investment Casting Mold Design ... 127
5.3 Advantages And Disadvantages Of Simulation Tool 127

CHAPTER 6 CONCLUSION.. 128
6.1 Conclusion ... 128
6.2 Recommendations ... 129

REFERENCES... 130

Appendix A: Technical Drawing ... 133
Appendix B: Investment Casting ... 137
Appendix C: Turbocharger ... 139
Appendix D: Rapid Prototyping .. 140
Appendix F: Simulation Data ... 142
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Characteristics of Casting Process</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Overall score of Casting Process</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Important Part of Sand Casting</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Mechanical Properties of Aluminum Silicon Carbide</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Physical Properties of Aluminum Silicon Carbide</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Thermal Properties of Aluminum Silicon Carbide</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Typical Tool and Die Material for the Metalworking</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Basic Types of Tool and Die Steels</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>The Mechanical and Physical Properties of the Workpiece and Tool</td>
<td>25</td>
</tr>
<tr>
<td>2.10</td>
<td>Component Element Properties of AISI H13</td>
<td>26</td>
</tr>
<tr>
<td>2.11</td>
<td>Physical Properties of AISI H13</td>
<td>26</td>
</tr>
<tr>
<td>2.12</td>
<td>Processing Properties of AISI H13</td>
<td>26</td>
</tr>
<tr>
<td>2.13</td>
<td>Thermal Properties of AISI H13</td>
<td>27</td>
</tr>
<tr>
<td>2.14</td>
<td>Mechanical Properties of AISI H13</td>
<td>28</td>
</tr>
<tr>
<td>2.15</td>
<td>Concept Screening Matrix</td>
<td>32</td>
</tr>
<tr>
<td>2.16</td>
<td>Rating in Screening Matrix</td>
<td>32</td>
</tr>
<tr>
<td>2.17</td>
<td>Concept Scoring Matrix</td>
<td>33</td>
</tr>
<tr>
<td>2.18</td>
<td>Rating In Scoring Matrix</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Concept Screening</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Concept Scoring Matrix</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of Case 1(a)</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of Case 1(b)</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of Case 2(a)</td>
<td>89</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of Case 2(b)</td>
<td>98</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary of Case 3(a)</td>
<td>107</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary of Case 3(b)</td>
<td>116</td>
</tr>
<tr>
<td>4.7</td>
<td>Specification of the Mold</td>
<td>117</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Gantt Chart of PSM 1</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Gantt Chart of PSM 2</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Hierarchical Classification of Various Casting Processes</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Example of common defects in casting. These defects can be minimized or</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>eliminated by proper design and preparation of mold and control of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pouring procedures</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Capability to Cast Input “Quantity” for Different Metal Casting Processes</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Capability to Cast Input “Weight” for Different Metal Casting Processes</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Capability to Cast Input “Tolerance” for Different Metal Casting Process</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Capability to Cast Input “Thin section” for Different Metal Casting</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Processes</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Capability to Cast Input “Surface finish” for Different Metal Casting</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Processes</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic illustration of the investment casting (lost wax) process</td>
<td>14</td>
</tr>
<tr>
<td>2.9</td>
<td>Block Mold Process Flow</td>
<td>15</td>
</tr>
<tr>
<td>2.10</td>
<td>Ceramic Shell-Mold Process Flow</td>
<td>16</td>
</tr>
<tr>
<td>2.11</td>
<td>Outline of Production Steps in A Typical Sand-Casting Operation</td>
<td>18</td>
</tr>
<tr>
<td>2.12</td>
<td>Schematic Illustration of a Sand Mold, Showing Various Features</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>Schematic Illustration of the Sequence of Operations for Sand Casting</td>
<td>21</td>
</tr>
<tr>
<td>2.14</td>
<td>The Five-Step Concept Generation Method</td>
<td>30</td>
</tr>
<tr>
<td>2.15</td>
<td>Example of Product Design by Using SolidWorks Tool</td>
<td>36</td>
</tr>
<tr>
<td>2.16</td>
<td>CFD Design Iteration</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology Flow Chart</td>
<td>39</td>
</tr>
<tr>
<td>3.2(a)</td>
<td>Ideas Generation</td>
<td>41</td>
</tr>
</tbody>
</table>
3.2(b) Ideas Generation 42
3.3 Concept 1 43
3.4 Concept 2 44
3.5 Concept 3 45
3.6 Mold Part A (Isometric View) 48
3.7 Mold Part B (Isometric View) 48
3.8 Before Mold Assembly 49
3.9 After Mold Assembly 49

4.1 Geometry for Simulation by Using SolidWorks 53
4.2 Browsing 3D Model Geometry 54
4.3 Refresh Mesh 54
4.4 Update Mesh 54
4.5 Mesh Editing 55
4.6 Create Boundary Condition 55
4.7 Insert the Boundary Condition Name 55
4.8 Select the Related Surface for the Boundary Condition 56
4.9 Save Project and Close the Mesh Window 56
4.10 Meshing for the Geometry of the Mold 57
4.11 Meshing for the Geometry of Inlet and Gating 57
4.12 Meshing for the Geometry of Turbocharger 57
4.13 Update the Mesh for the Additional Information 58
4.14 ANSYS FLUENT Launcher 58
4.15 ANSYS FLUENT Window 59
4.16 Enable Energy Equation 59
4.17 Viscous Model Setting 60
4.18 Create Material Type for Fluid 60
4.19 Velocity Magnitude Setting for Velocity Inlet 61
4.20 Temperature Setting for Velocity Inlet 61
4.21 Select the Solution Initialize 62
4.22 Set the Number of Iteration and Start Running Calculation 62
4.23 Scaled Residuals 63
4.24 Contours of Static Pressure for the Mold (Pascal) 64
4.25 Velocity Vector Colored by Static Pressure for the Mold (Pascal) 64
4.26 Velocity Vector Colored by Static Pressure for the Turbocharger (Pascal) 65
4.27 Contours of Density for the Mold (kg/m2) 65
4.28 Velocity Vector Colored by Density for the Mold (kg/m2) 66
4.29 Velocity Vector Colored by Density for the Turbocharger (kg/m2) 66
4.30 Contours of Velocity Magnitude for the Mold (m/s) 67
4.31 Velocity Vector Colored by Velocity Magnitude for the Mold (m/s) 67
4.32 Velocity Vector Colored by Velocity Magnitude for the Turbocharger (m/s) 68
4.33 Contours of Static Temperature for the Mold (K) 68
4.34 Velocity Vector Colored by Static Temperature for the Mold (K) 69
4.35 Velocity Vector Colored by Static Temperature for the Turbocharger (K) 69
4.36 Contours of Turbulence Kinetic Energy for the Mold (m2/s2) 70
4.37 Velocity Vector by Turbulence Kinetic Energy for the Mold (m2/s2) 70
4.38 Velocity Vector by Turbulence Kinetic Energy for the Turbocharger (m2/s2) 71
4.39 Scaled Residuals 72
4.40 Contours of Static Pressure for the Mold (Pascal) 73
4.41 Velocity Vector Colored by Static Pressure for the Mold (Pascal) 73
4.42 Velocity Vector Colored by Static Pressure for the Turbocharger (Pascal) 74
4.43 Contours of Density for the Mold (kg/m2) 74
4.44 Velocity Vector Colored by Density for the Mold (kg/m2) 75
4.45 Velocity Vector Colored by Density for the Turbocharger (kg/m2) 75
4.46 Contours of Velocity Magnitude for the Mold (m/s) 76
4.47 Velocity Vector Colored by Velocity Magnitude for the Mold (m/s) 76
4.48 Velocity Vector Colored by Velocity Magnitude for the Turbocharger (m/s) 77
4.49 Contours of Static Temperature for the Mold (K) 77
4.50 Velocity Vector Colored by Static Temperature for the Mold (K) 78
4.51 Velocity Vector Colored by Static Temperature for the Turbocharger (K) 78
4.52 Contours of Turbulence Kinetic Energy for the Mold (m2/s2) 79
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.53</td>
<td>Velocity Vector by Turbulence Kinetic Energy for the Mold (m^2/s^2)</td>
</tr>
<tr>
<td>4.54</td>
<td>Velocity Vector by Turbulence Kinetic Energy for the Turbocharger (m^2/s^2)</td>
</tr>
<tr>
<td>4.55</td>
<td>Scaled Residuals</td>
</tr>
<tr>
<td>4.56</td>
<td>Contours of Static Pressure for the Mold (Pascal)</td>
</tr>
<tr>
<td>4.57</td>
<td>Velocity Vector Colored by Static Pressure for the Mold (Pascal)</td>
</tr>
<tr>
<td>4.58</td>
<td>Velocity Vector Colored by Static Pressure for the Turbocharger (Pascal)</td>
</tr>
<tr>
<td>4.59</td>
<td>Contours of Density for the Mold (kg/m(^2))</td>
</tr>
<tr>
<td>4.60</td>
<td>Velocity Vector Colored by Density for the Mold (kg/m(^2))</td>
</tr>
<tr>
<td>4.61</td>
<td>Velocity Vector Colored by Density for the Turbocharger (kg/m(^2))</td>
</tr>
<tr>
<td>4.62</td>
<td>Contours of Velocity Magnitude for the Mold (m/s)</td>
</tr>
<tr>
<td>4.63</td>
<td>Velocity Vector Colored by Velocity Magnitude for the Mold (m/s)</td>
</tr>
<tr>
<td>4.64</td>
<td>Velocity Vector Colored by Velocity Magnitude for the Turbocharger (m/s)</td>
</tr>
<tr>
<td>4.65</td>
<td>Contours of Static Temperature for the Mold (K)</td>
</tr>
<tr>
<td>4.66</td>
<td>Velocity Vector Colored by Static Temperature for the Mold (K)</td>
</tr>
<tr>
<td>4.67</td>
<td>Velocity Vector Colored by Static Temperature for the Turbocharger (K)</td>
</tr>
<tr>
<td>4.68</td>
<td>Contours of Turbulence Kinetic Energy for the Mold (m^2/s^2)</td>
</tr>
<tr>
<td>4.69</td>
<td>Velocity Vector by Turbulence Kinetic Energy for the Mold (m^2/s^2)</td>
</tr>
<tr>
<td>4.70</td>
<td>Velocity Vector by Turbulence Kinetic Energy for the Turbocharger (m^2/s^2)</td>
</tr>
<tr>
<td>4.71</td>
<td>Scaled Residuals</td>
</tr>
<tr>
<td>4.72</td>
<td>Contours of Static Pressure for the Mold (Pascal)</td>
</tr>
<tr>
<td>4.73</td>
<td>Velocity Vector Colored by Static Pressure for the Mold (Pascal)</td>
</tr>
<tr>
<td>4.74</td>
<td>Velocity Vector Colored by Static Pressure for the Turbocharger (Pascal)</td>
</tr>
<tr>
<td>4.75</td>
<td>Contours of Density for the Mold (kg/m(^2))</td>
</tr>
<tr>
<td>4.76</td>
<td>Velocity Vector Colored by Density for the Mold (kg/m(^2))</td>
</tr>
<tr>
<td>4.77</td>
<td>Velocity Vector Colored by Density for the Turbocharger (kg/m(^2))</td>
</tr>
<tr>
<td>4.78</td>
<td>Contours of Velocity Magnitude for the Mold (m/s)</td>
</tr>
<tr>
<td>4.79</td>
<td>Velocity Vector Colored by Velocity Magnitude for the Mold (m/s)</td>
</tr>
</tbody>
</table>
4.80 Velocity Vector Colored by Velocity Magnitude for the Turbocharger (m/s) 95
4.81 Contours of Static Temperature for the Mold (K) 95
4.82 Velocity Vector Colored by Static Temperature for the Mold (K) 96
4.83 Velocity Vector Colored by Static Temperature for the Turbocharger (K) 96
4.84 Contours of Turbulence Kinetic Energy for the Mold (m²/s²) 97
4.85 Velocity Vector by Turbulence Kinetic Energy for the Mold (m²/s²) 97
4.86 Velocity Vector by Turbulence Kinetic Energy for the Turbocharger (m²/s²) 98
4.87 Scaled Residuals 99
4.88 Contours of Static Pressure for the Mold (Pascal) 100
4.89 Velocity Vector Colored by Static Pressure for the Mold (Pascal) 100
4.90 Velocity Vector Colored by Static Pressure for the Turbocharger (Pascal) 101
4.91 Contours of Density for the Mold (kg/m²) 101
4.92 Velocity Vector Colored by Density for the Mold (kg/m²) 102
4.93 Velocity Vector Colored by Density for the Turbocharger (kg/m²) 102
4.94 Contours of Velocity Magnitude for the Mold (m/s) 103
4.95 Velocity Vector Colored by Velocity Magnitude for the Mold (m/s) 103
4.96 Velocity Vector Colored by Velocity Magnitude for the Turbocharger (m/s) 104
4.97 Contours of Static Temperature for the Mold (K) 104
4.98 Velocity Vector Colored by Static Temperature for the Mold (K) 105
4.99 Velocity Vector Colored by Static Temperature for the Turbocharger (K) 105
4.100 Contours of Turbulence Kinetic Energy for the Mold (m²/s²) 106
4.101 Velocity Vector by Turbulence Kinetic Energy for the Mold (m²/s²) 106
4.102 Velocity Vector by Turbulence Kinetic Energy for the Turbocharger (m²/s²) 107
4.103 Scaled Residuals 108
4.104 Contours of Static Pressure for the Mold (Pascal) 109
LIST OF ABBREVIATIONS

AISI H13 - Chromium-Molybdenum-Vanadium Allooyed Steel

CAD - Computer Aid Design

CFD - Computational Fluid Dynamics

CFX - Advanced Computational Fluid Dynamics

STL - Stereolithography

Utem - Universiti Teknikal Malaysia Melaka
CHAPTER 1
INTRODUCTION

1.1 Background

There is various manufacturing process to produce parts which is including machining, casting, joining, forming and shaping. Among these manufacturing processes, metal casting is the most effective to produce metal parts. Metal casting processes include sand casting, plaster casting, investment casting and etc. Each of the process has its own characteristics and application to meet specific engineering and services requirement.

According to Kasim, et al. (2008), manufacturing process selection is the task of choosing a method for transforming a set of material into a given shape using one or more processes. The material and manufacturing process selection problem is a multi-attribute decision-making problem. These decisions are made during the preliminary design stages in an environment characterized by and uncertain requirements, parameters, and relationships. Material and process selection decisions occur before design for manufacturing can begin.

According to Ravi and Datta (2004), metal casting has been mentioned in ancient Sanskrit texts such as Shilpashastra and Yantra Sarvasva and detailed in mediaeval texts such as Shilparatna and Manasara. The major application was in creating the idols used for worship; and very strict rules were laid down to achieve perfection in terms of talmana (proportions), mudra (stance) and bhava (expression). Other products included lamps, doors, frames, bells, cooking utensils, agricultural implements and weapons.
According to Kalpakjian and Schmid (2006), metal casting technology was started before 4000 B.C. by using materials such as gold, copper and meteoric iron. Lost wax process which is known as investment casting was started around 4000 B.C to 3000 B.C. The technique of metal casting is keeping improved until nowadays to produce the best quality of metal product and to achieve public need and requirement.

For metal casting process, mold filling is the most important step in determining the quality of a casting. Surface quality, porosity caused by gas entrapment, misruns, micro segregation and mold erosion caused by strong metal streams. All these phenomena can be closely related to the mold filling condition. Therefore, mold life is also affected by mold filling. Although the solidification process appears to be of primary interest to the foundry engineer, solidification alone does not suffice for accurate prediction of casting quality refer to Attar et al. (2005).

A good design of mold will allow a smooth flow when filling. Therefore, mold design process is important to produce a better metal casting product. This study will carry out a casting mold design by using a CAD tool SolidWorks. The designation and the type of casting mold will be validated. The finite element analysis will be done on the mold. The analysis of heat transfer, temperature & pressure will be presented by using ANSYS. An automotive part, turbocharger impeller will be used as the product for the casting mold.

1.2 Problem Statement

As an automation part the turbocharger impeller is a very unique product. It needs sharp edge and strength to sustain it life. The angle of curvature at the inlet of curve inducer blades is hard to produce using machining technique. It is a time wasting if producing turbocharger impeller by using machining technique. Therefore, a sufficient technique is needed to produce this product with perfect quality and quantity. Metal casting is suitable for producing a metal product. To produce complex shape product with curve inducer blades, the type of metal casting process for the mold need to be determined.
1.3 Objectives

The objectives of this project are:

a) To investigate the design parameters in designing casting mold.
b) To analyze the temperature and pressure in casting mold.
c) To propose a design of investment casting mold.

1.4 Scope and Key Assumption

This project presents the design of casting mold using CAD tools. SolidWorks is used to perform the details drawing of the mold. The analysis of temperature and pressure is presented by using simulation ANSYS. As a result, the design of investment casting mold is proposed. Stainless steel H13 is selected as the material of the mold.

1.5 Organization of the Report

The whole report is divided into six major parts, which is known as Introduction, Literature Review, Methodology, Results, Discussion, and Conclusion. Each chapter is briefly such as below:

a) Chapter 1: Introduction

This chapter briefly describes about the background of the study, problem statement, the objectives and scopes of the project. In the end of this chapter, it summarized the whole project and Gantt chart of the project will be shown at the end of this chapter.

b) Chapter 2: Literature Review

In this chapter, related information of the project is summarized. The literature reviews includes the introduction to technology of casting, selection of the casting mold type, material selection for the mold and tool selection for design the mold and
to analysis it. The sources which are from journals, books, internet, articles and others are the guide to completing this project.

c) Chapter 3: Methodology
Methodology shows the flow of designing of the project. It starts from the problem analysis to the concept generation and concept selection and make the design decision. It is then following with the process of investment casting mold to produce the turbocharger.

d) Chapter 4: Results
In this chapter, the analysis of the mold is presented which is including temperature and pressure of the selected mold. At the end of the process, the design parameter is defined and an investment casting mold is proposed.

e) Chapter 5: Discussion
This chapter generally discusses on the result of the finding and implicate of the project. The finding is comparing to the objectives of the project whether it cover the scope of the study.

f) Chapter 6: Conclusion
At the end of the report, summarize of the project is make. Alternative suggestion or recommendation is given to improve in future study.
Gantt chart is built to show the sequence of the project flow and activities. Figure 1.1 such as below shows the Gantt chart for PSM 1 which is briefly shows the time taken to finish the task in completing the project.

Figure 1.1: Gantt Chart of PSM 1.