DESIGN AND ANALYSIS OF HEAT FLOW FOR DRYER SYSTEM

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) with Honours.

by

WONG CHENG YEONG

FACULTY OF MANUFACTURING ENGINEERING
APR 2010
TAJUK: Design and Analysis of Heat Flow for Dryer System

SESU PENGAJIAN: 2009/10 Semester 2

Saya WONG CHENG YEONG

mengaku membeacherakan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka diberikan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan diberikan untuk salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (v)

☐ SULIT
☐ TERHAD
☐ TIDAK TERHAD

(Mengandungi maklumat yang berdaurah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Alamat Tetap:
P.O.Box 22577,
88785 Luyang,
Kota Kinabalu, Sabah

Tarikh: 8/4/2012

Disahkan oleh:

Cop Rasmii:

WAHYONO SAPTOSWIBOBO
Pensyarah
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampikan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declare this thesis entitled “Design and Analysis of Heat Flow for Dryer System.” is the results of my own research except as cited in the reference.

Signature : …………………………………
Author’s Name : WONG CHENG YEONG
Date : 8th APR 2010
The thesis submitted to the senate of UTeM has been accepted as partial fulfillment of the requirement for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design). The members of the supervisory committee are as follows:

Supervisor: MR. WAHYONO SAPTO WIDODO
Date: ..
Stamp: ..

Co-Supervisor: MR. TAUFIK
Date: ..
Stamp: ..
ABSTRACT

The title of this project is Design and Analysis of Heat Flow for Dryer system. Basically, this project is to define the design verification and identify the calculation parameter in order to develop a dryer system. Besides that, the existing dryer system was analyzed to prove that the system is work under expectation from the past studies and discover how the heat flow was affected to the entire drying process in actual condition. Therefore, by using the 3D CAD software to develop the dryer in 3D modeling is the first step which leads to the progress of this project. Through this step, the dryer system development and function ability can be clearly understood by the end of analyzing process is accomplished. Due to the analysis result, the modification and redesign process of the dryer system is done to ensure that the system drying efficiency is improved and it can apply in actual condition. Before generating the product in 3D modeling, the basic data and information of existing dryer system is required such as dimension of dryer equipment, air and heat source supply range, sizing method and etc. Finally discussion of the result obtained are stated and some recommendations to help improve further research of the project.
ABSTRAK

ACKNOWLEDGEMENT

Firstly, I would like to take this opportunity to express my gratitude and appreciation to my respectable supervisor, Mr. Wahyono Sapto Widodo, for his honest guidance and the continuous support and help to accomplish this project. His willingness to share with me his knowledge in the field of my works leads this project to reality.

Besides that, I am appreciated and glad to my co-supervisor, Mr. Taufik, constantly giving support on his knowledge, experience and motivation from the beginning until the end of this project.

In addition, I also would like to special thanks to my friends who have show their knowledge and assisting me in overcoming the difficulties throughout the project. Lastly, I would like to express my appreciation and gratitude to my parents for their understanding and continuous care of me during the course of the project.
TABLE OF CONTENT

Declaration... i
Approval.. ii
Abstract... iii
Abstrak... iv
Acknowledgment.. v
Table of contents.. vi
List of Figures... x
List of Tables.. xviii
List of abbreviations.. xix

1.0 INTRODUCTION.. 1
 1.1 Introduction... 1
 1.2 Objective.. 3
 1.3 Scope of study.. 3
 1.4 Problem statement... 3
 1.5 Report organization... 4
 1.6 PSM 1 and 2 planning flow process... 5

2.0 LITERATURES REVIEW... 8
 2.1 Introduction... 8
 2.2 Introduction of dryer.. 8
 2.3 Basic principle and terminology of drying.. 9
2.4 Classification of dryer ... 10
2.5 Tray dryers .. 12
2.6 Fan selection .. 14
 2.6.1 Introduction of fan ... 14
 2.6.2 System characteristic .. 15
 2.6.3 Fan characteristic ... 16
 2.6.4 Fan laws ... 16
 2.6.5 Fan types ... 17
 2.6.6 Fan efficiency and performance 20
2.7 Electrical heater ... 22
 2.7.1 Fixed-position electrical heater 22
2.8 Heat recovery system for dryer ... 26
2.9 Factor consideration in sizing heater and fan/blower 29
 2.9.1 Drying chamber sizing ... 29
 2.9.2 Material of product require to dry 30
 2.9.3 Internal flow and pressure loss due to friction 35
2.10 Insulation of the drying chamber 36
2.11 Heat transfer ... 37
2.12 ANSYS CFX simulation software 39
 2.12.1 Introduction .. 39
 2.12.2 Computational fluid dynamics solution (CFD) 40
 2.12.3 ANSYS CFX in workbench 40
3.0 METHODOLOGY ... 48

3.1 Introduction ... 48

3.2 Methodology flow chart .. 48

3.3 Phase 1 (conceptual and planning) 50

3.3.1 Determine design parameter of existing product 51

3.4 Phase 2 (analyze and evaluation) 54

3.4.1 Detail design and drawing of existing dryer 55

3.4.2 Create geometry of drying chamber 59

3.4.3 Create CFX mesh file .. 59

3.4.4 Setup the solver and physical models in ANSYS FLUENT ... 63

3.4.5 Simulate and viewing the result in ANSYS FLUENT .. 65

4.0 DESIGN AND ANALYSIS ... 71

4.1 Introduction ... 71

4.2 Evaluate analysis result of existing dryer system 71

4.3 Phase 3 (redesign and evaluation) 77

4.3.1 Idea generation .. 78

4.3.2 Concept 1 ... 80

4.3.3 Concept 2 ... 81

4.3.4 Concept 3 ... 82

4.3.5 Concept screening matrix .. 83

4.3.6 Concept scoring matrix ... 84

4.3.7 Detail design and drawing of redesign dryer 85
LIST OF FIGURES

1.1 Gantt chart of PSM 1 6
1.2 Gantt chart of PSM 2 7

2.1 A Batch Tray Dryer 13
2.2 Diagram of Food dryer 13
2.3 Overview of Food Dryer 14
2.4 System Curve of a Fan and Effect of System Resistance 15
2.5 Centrifugal Fan with Scroll Enclosure 17
2.6 Vane-Axial Fan with Motor in Air Stream 19
2.7 Efficiency versus Flowrate 21
2.8 Typical Heater Components 23
2.9 Baseboard Heating Unit 24
2.10 Sheathed Heating Element Example 24
2.11 Forced-Air Convection Electric Heater 25
2.12 Open-Coil Heating Element Subassembly 25
2.13 Radiant Electric Heater or Duct Heater 26
2.14 Direct Air Heat Recovery System 27
2.15 Air-To-Air Heat Recovery System 28
2.16 Direct Thermal Oxidizer 28
2.17 Drying Rate Curve under Constant Drying Conditions 34
2.18 Insulation Diagram of Drying Chamber 36
2.19 Progress and Instruction Flow Chart of ANSYS CFX in
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.20</td>
<td>ANSYS DesignModeler Geometry Software</td>
</tr>
<tr>
<td>2.21</td>
<td>ANSYS Meshing Generation Method</td>
</tr>
<tr>
<td>2.22</td>
<td>ANSYS CFX-Pre Physics Generation Software</td>
</tr>
<tr>
<td>2.23</td>
<td>Office Ventilation</td>
</tr>
<tr>
<td>2.24</td>
<td>Airplane Nacelle</td>
</tr>
<tr>
<td>2.25</td>
<td>Feed Nozzle for Distribution Column</td>
</tr>
<tr>
<td>2.26</td>
<td>Grinding Mill</td>
</tr>
<tr>
<td>2.27</td>
<td>Auxiliary Automobile Heating</td>
</tr>
<tr>
<td>2.28</td>
<td>Fan for Air Cushion Vehicle</td>
</tr>
<tr>
<td>2.29</td>
<td>Simulation Result in Graft Type</td>
</tr>
<tr>
<td>2.30</td>
<td>Simulation result in Flow Progress Type</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology Flow Chart</td>
</tr>
<tr>
<td>3.2</td>
<td>Diagram of Trays Arrangement in the Drying Chamber</td>
</tr>
<tr>
<td>3.3</td>
<td>Overview Diagram of the Existing Cabinet Grain Dryer</td>
</tr>
<tr>
<td>3.4</td>
<td>External View of the Existing Cabinet Grain Dryer</td>
</tr>
<tr>
<td></td>
<td>(Isometric View)</td>
</tr>
<tr>
<td>3.5</td>
<td>Internal view of the Existing Cabinet Grain Dryer</td>
</tr>
<tr>
<td></td>
<td>(Isometric View)</td>
</tr>
<tr>
<td>3.6</td>
<td>Internal and External view of Dryer (Top View)</td>
</tr>
<tr>
<td>3.7</td>
<td>Internal and External view of Dryer (Side View)</td>
</tr>
<tr>
<td>3.8</td>
<td>Internal and External view of Dryer (Front View)</td>
</tr>
<tr>
<td>3.9</td>
<td>Internal and External view of Dryer (Rear View)</td>
</tr>
<tr>
<td>3.10</td>
<td>Trolley and Tray (Isometric View)</td>
</tr>
</tbody>
</table>
3.11 Main Parts of Dryer System (Exploded View)
3.12 Half Geometry and Interior of the Drying Chamber
3.13 Transferred the drying chamber geometry (CAD file) into ANSYS Mesh component system
3.14 Create the boundaries condition and Mesh of Drying Chamber Geometry
3.15 To Refine the Mesh Range of Drying Chamber Geometry
3.16 After Mesh Refinement of Drying Chamber Geometry
3.17 After Drying Chamber Mesh File Has Been Read into ANSYS FLUENT
3.18 Solver and Physical model setting in ANSYS FLUENT
3.19 Launching the ANSYS FLUENT Simulation and Calculation
3.20 Scaled Residuals in Graft Result of Drying Chamber Simulation
3.21 Flow Rate in Graft Result of Drying Chamber Simulation (Inlet)
3.22 Flow Rate in Graft Result of Drying Chamber Simulation (Outlet)
3.23 Volume Flow Rate in Graft Result of Drying Chamber Simulation (Inlet)
3.24 Volume Flow Rate in Graft Result of Drying Chamber Simulation (Outlet)
3.25 Static Temperature in Graphical Result of Drying Chamber Simulation
3.26 Static Pressure in Graphical Result of Drying Chamber Simulation

3.27 Turbulent Kinetic Energy in Graphical Result of Drying Chamber Simulation

3.28 Velocity Magnitude in Graphical Result of Drying Chamber Simulation

4.1 Beginning Air Flow Rate in the Existing Drying Chamber Analysis

4.2 Total Air Flow Rate in the Existing Drying Chamber Analysis

4.3 Direction of the Drying Chamber during In the ANSYS Analysis

4.4 Turbulence Kinetic Energy in Existing Drying Chamber

4.5 Velocity Magnitude in Existing Drying Chamber

4.6 Static Pressure in Existing Drying Chamber

4.7 Static Temperature in Existing Drying Chamber

4.8 Flow Rate in Existing Drying Chamber

4.9 Volumetric Flow Rate in Existing Drying Chamber (Outlet)

4.10 Density in Existing Drying Chamber

4.11(a) Idea Generation

4.11(b) Idea Generation

4.12 Concept 1

4.13 Concept 2

4.14 Concept 3
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.15</td>
<td>External view of the Redesign Cabinet Grain Dryer (Isometric View)</td>
</tr>
<tr>
<td>4.16</td>
<td>Internal View of the Redesign Cabinet Grain Dryer (Isometric View)</td>
</tr>
<tr>
<td>4.17</td>
<td>Internal and External view of Redesign Dryer (Top View)</td>
</tr>
<tr>
<td>4.18</td>
<td>Internal and External view of Redesign Dryer (Front View)</td>
</tr>
<tr>
<td>4.19</td>
<td>Internal and External view of Redesign Dryer (Side View)</td>
</tr>
<tr>
<td>4.20</td>
<td>Detail Design of Air Supply System in Redesign Dryer (Isometric View)</td>
</tr>
<tr>
<td>4.21</td>
<td>Tray and Trolley (Isometric View)</td>
</tr>
<tr>
<td>4.22</td>
<td>Main Parts of Redesign Dryer System (Exploded View)</td>
</tr>
<tr>
<td>4.23</td>
<td>Half Geometry and Interior of the Dryer System</td>
</tr>
<tr>
<td>4.24</td>
<td>ANSYS Workbench Working Place</td>
</tr>
<tr>
<td>4.25</td>
<td>Import Geometry into the Meshing System</td>
</tr>
<tr>
<td>4.26</td>
<td>Browse and Select Suitable Geometry Which Needed to Convert</td>
</tr>
<tr>
<td>4.27</td>
<td>Begin to Edit the Mesh of Redesign Dryer System</td>
</tr>
<tr>
<td>4.28</td>
<td>Meshing Working Place</td>
</tr>
<tr>
<td>4.29</td>
<td>Develop Boundaries Condition of the Drying System</td>
</tr>
<tr>
<td>4.30</td>
<td>Named the Boundaries Conditions</td>
</tr>
<tr>
<td>4.31</td>
<td>Select the Source Surface and Apply It</td>
</tr>
<tr>
<td>4.32</td>
<td>Open CFX Mesh to Refine the Mesh System in Current Geometry</td>
</tr>
<tr>
<td>4.33</td>
<td>CFX Mesh Working Place</td>
</tr>
<tr>
<td>4.34</td>
<td>Create 2D region on the Drying System Geometry</td>
</tr>
</tbody>
</table>
4.35 Select the Air Source Surface and apply it as Main Inlet for 2D Region
96
4.36 Reset the Body Spacing Value 97
4.37 Small Surface Area of the Drying System Region 98
4.38 Select and apply the Small Surface Area of the Drying System Region 99
4.39 Set the Face Spacing Value For Selected Surface Area Region 99
4.40 Generate the Surface Meshes on the Drying System Geometry 100
4.41 To Preview the Mesh Range of Dryer System Geometry 101
4.42 After Mesh Refinement of Dryer System Geometry 101
4.43 Open ANSYS FLUENT Launcher 102
4.44 Set and Launch the ANSYS FLUENT 103
4.45 ANSYS FLUENT Working Place 103
4.46 Import the drying system mesh file into ANSYS FLUENT Working Place 104
4.47 Search and Open the Drying System Mesh File 104
4.48 Search and Open the Drying System Mesh File 105
4.49 Select General Setting in the Navigation Pane 105
4.50 Check and Preview the Mesh Checking Result 106
4.51 Report of Mesh Checking Result 106
4.52 Energy Dialog Box 107
4.53 Viscous Model Dialog Box 107
4.54 Viscous Model Dialog Box Expended 108
4.55 Create and Edit Material Setting Dialog Box 108
4.56 Create and Edit Velocity Inlet Setting Dialog Box 109
4.57 Enter Velocity Magnitude Value into the Momentum Properties

4.58 Enter the temperature Value into the Thermal Properties

4.59 Set the Number of Iteration and Run the Analysis and Simulation of the Drying System

4.60 Beginning Air Flow Rate in the Improved Drying System Analysis

4.61 Convergence Comparison between Existing and Improved Dryer System

4.62 Direction of the Drying System during In the ANSYS Analysis

4.63 Turbulence Kinetic Energy in Improved Dryer System (Side View)

4.64 Turbulence Kinetic Energy in Improved Dryer System (Isometric View)

4.65 Velocity Magnitude in Improved Dryer System (Side View)

4.66 Velocity Magnitude in Improved Dryer System (Isometric View)

4.67 Static Temperature in Improved Dryer System (Side View)

4.68 Static Temperature in Improved Dryer System (Isometric View)

4.69 Static Pressure in Improved Dryer System (Side View)

4.70 Static Pressure in Improved Dryer System (Isometric View)

4.71 Density in Improved Dryer System (Side View)

4.72 Density in Improved Dryer System (Isometric View)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Ducting System of New Dryer System Design</td>
<td>120</td>
</tr>
<tr>
<td>5.2</td>
<td>Sections of New Dryer System Design</td>
<td>122</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of dryer</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Speed, Pressure, and Power of Fans</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Characteristic of Different Centrifugal Fans</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Characteristic of Different Axial Fans</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Efficiency of Various Fans</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Approximate Range of Effective Moisture Diffusivity in Some Material</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Minimum water activity, aw, for microbial growth and spore germination</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Cabinet grain dryer general instruction</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Volume Mesh Generation Statistics</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Concept Screening Matrix</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Concept Scoring Matrix</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>Volume Mesh Generation Statistics</td>
<td>100</td>
</tr>
<tr>
<td>4.4</td>
<td>Problem Description of the New Design Dryer System</td>
<td>102</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary of Analysis Result</td>
<td>118</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
<td></td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
<td></td>
</tr>
<tr>
<td>UTeM</td>
<td>Universiti Teknikal Malaysia Melaka</td>
<td></td>
</tr>
<tr>
<td>RPM</td>
<td>Revolution per minute</td>
<td></td>
</tr>
<tr>
<td>SFM</td>
<td>Surface feet per minute</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>Three dimension</td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>Two dimension</td>
<td></td>
</tr>
<tr>
<td>CFD</td>
<td>Computational fluid dynamics</td>
<td></td>
</tr>
<tr>
<td>IGES</td>
<td>Initial Graphics Exchange Specification</td>
<td></td>
</tr>
<tr>
<td>SLDPRT</td>
<td>SolidWork part file</td>
<td></td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram (mass unit)</td>
<td></td>
</tr>
<tr>
<td>m³</td>
<td>Meter cube (volume unit)</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>Joule (energy unit)</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>Kelvin (temperature unit)</td>
<td></td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal (pressure unit)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Second (time unit)</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Introduction

Tray dryer is an equipment or machine which is very useful in small industrial sector such as food industrial, chemical industrial are using the dryer as their manufacture system to dry up their product for certain purpose or use.

Normally, the development of tray dryer is the simplest and cheapest. It has a very simple drying system, it is require some form air heater and a fan to pass air over the product to reduce moisture or evaporate the moisture into vapor condition, and the drying temperature is set around 30 degree Celsius to 80 degree Celsius and above. The air enters the bottom of the chamber below the trays and then rises, through the trays of product being dried, and exits through the ducting system or opening in the top of chamber. Besides that, this system also reduces back pressure and which is means that the dryer can be build in cheaper cost by using smaller fan and others low cost material.

Due to the drying process, it depends to the moisture content inside the material need to reduce and it also affected by the time is taking to reduce the product moisture content. Therefore, drying process is important especially for food industrial, it’s made the food in dry condition for the storage purpose, management purpose and manufacture process purpose. However, most of the tray dryers are facing the same problem in design level and drying process, which is the heat flow in drying chamber uncontrollable and unstable.
Although the development of tray dryer is low, the unbalanced heat flow directly affected to the production process and labor cost. When the heats are supply from the bottom of dryer, the tray which place near by the heat source is dry faster than other trays. If need to dry up all the product in once drying cycle, it is impossible because the product which close to the heat source will damage and may affected to others product quality.

Thus, in some cases, the tray dryer build with lifting mechanism or others additional equipment to assist and lift up the entire tray except the tray close to the heat source is removing out of the drying chamber. To adding the new product into the dryer, the tray will load from the top of drying chamber and the work flow will continue until the entire drying process is stop. Therefore, this type of system requires high labor hour, energy and cost to complete the drying process.

To improve the tray dryer system function more effectively, this project will focus on the design and analysis of heat flow in the dryer system. Besides that, the entire project also involve some technique on how to validate the design and development of heat flow generation by comparing the existing design of tray dryer which done by Stephen and Emmanuel, (2009).

Hence, to accomplish this project, understanding of heat and air supply characteristic and sizing are the main obsession which needs to be done. Besides to understanding about the heat and air thermodynamic properties, the design of the drying chamber and tray system must allow the heat flow easy to run through the system and balanced.
1.2 **Objectives**

The objectives of this project are:

i. To apply CAD software in designing the tray dryer.
ii. To study the ways to obtain the sizing of heat and air source.
iii. Determine the heat flow by using software application to analyze.
iv. To improve the existing tray dryer heat flow design.

1.3 **Scope of study**

Through this project, it will focus on the tray dryer heat flow analysis and it also involves software application, ANSYS, to make comparison between the existing design and new design. To validate the design, software SOLIDWORKS is using to develop the tray dryer and require to construct the dryer in three dimension simulation model to expose the dryer efficiency and reliability before proceed into the actual condition. Meanwhile, considerations of sizing the heat and air supply in developing the tray dryer need to be more carefully taken and to prevent any uncertainty and error.

1.4 **Problem statement**

Basically, the main problem in this project is focus on the existing tray dryer, which cannot provide a proper design in the heat flow and analysis. Besides that, one of the major problems to achieve this project is the heat source sizing and fan population that may cause uncertainty factor and the dryer cannot function properly in the drying process. Therefore, to select a suitable heat supply and fan generator are become difficult and it require advance knowledge and experience in thermo and fluid. Without that knowledge, the whole design of the tray dryer may fail. Hence, further study, parameters and setting need to be consider as good as well.