STUDY THE EFFECT OF HEAT TREATMENT TEMPERATURE AND TIME ON CARBIDE FORMATION AND HARDNESS VARIATION OF DEPOSITED NICKEL BASED ALLOY

Thesis submitted in accordance with the partial requirements of the Universiti Teknikal Malaysia Melaka for the Degree Bachelor of Manufacturing Engineering (Engineering Material) with Honours

By:

MOHD LUTFI BIN NORDIN

FACULTY OF MANUFACTURING ENGINEERS
2010
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: STUDY THE EFFECT OF HEAT TREATMENT TEMPERATURE AND TIME ON CARBIDE FORMATION AND HARDNESS VARIATION OF DEPOSITED NICKEL BASED ALLOY

SESI PENGAJIAN: 2009-2010 Semester 2

Saya, MOHD LUTFI BIN NORDIN

mengaku membentuk Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandemkan (✓)

☐ SULIT (Mengandungi maklumat yang berdasarkan keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap:
32-0-4 BAMBU D, JLN 27/56
KERAMAT WANGSA, 54200 KUALA LUMPUR

Tarih: ____________________________

(TANDATANGAN PENYELIA)

Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi rkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai LIT atau TERHAD.

Cop Rasmi:

DR. KUR IRZAN SYAHRIAH BINTI HUSSEIN
Pensyarah
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka

Tarih: 21/5/2010
DECLARATION

I hereby declare that this report entitled “STUDY THE EFFECT OF HEAT TREATMENT TEMPERATURE AND TIME ON CARBIDE FORMATION AND HARDNESS VARIATION OF DEPOSITED NICKEL BASED ALLOYS” is the result of my own research except as cited in the references.

Signature :
Author’s Name : Mohd Lutfi Bin Nordin
Date : 14 APRIL 2010
APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Material). The members of the supervisory committee are as follow:

Dr. NUR IZAN SYAHRIAH BT HUSSEIN
(Main Supervisor)

DR. NUR IZAN SYAHRIAH BINTI HUSSEIN
Pensyarah
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka
ABSTRACT

The microstructure of two different types of the nickel-based superalloy Waspaloy were characterized. One alloy was in the as-received condition whilst the other processed by Shaped Metal Deposition using Tungsten Heat source welding manipulator under argon. In this study, the effects of heat treatment temperature and time on carbide formation and hardness variations on the two Waspaloy samples were investigated; using optical microscopy technique and hardness test. The samples were then subjected to X-Ray diffraction analysis. It was found that Waspaloy consists of γ matrix, γ precipitates and carbide particle. The XRD analysis displayed a presence of carbide and austenitic phase in the as-received Waspaloy and deposited Waspaloy, indicating that the particles are possibly MC carbides and M₇₄C₆ carbide. Following solution treatment process, the as-received and deposited waspaloy had lower hardness and strength when compared to solution treatment and ageing process. The ageing process for 16 and 30 hours dramatically increase the strength of the as-deposited samples. For instance, from the initial hardness of 295 kgf/m² to 433 kgf/m². The results show that the optimum temperature and time for heat treatment is similar to the standard heat treatment of the wrought Waspaloy which is solution treatment at 1080 °C for 4 hours/air cooling, followed by stabilization at 845 °C for 4 hour/ac and to aging at 760 °C for 16 hour/ac.
ABSTRAK

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest thanks and appreciation to my friends for supporting throughout the period of this final year project is conducted. It is a privilege for me to complete my final year project as to fulfill my degree requirement.

I would like to convey my most heartfelt gratitude to my supervisor, Dr. Nur Izan Syahriah Bte Hussein who has graciously offered her precious time, attention, experience and guidance throughout the completion of the investigation thus far, I appreciate the opportunities of learning from her

Lastly, I would to thank each and every individual who have either directly or indirectly helped me throughout the effort of this report be it in the form of encouragement, advice or kind reminder. A special thanks to my beloved family members, I extend my grateful for their support and understanding.
TABLE OF CONTENT

Declaration ii
Approval iii
Abstract iv
Acknowledgement vi
List of Figure x
List of Table xiv
List of Abbreviations xv
List of Symbols, Specialized Nomenclature xvi

1.0 INTRODUCTION
1.1 Introduction 1
1.2 Background of the Problem 3
1.3 Problem statement 3
1.4 Objective 4
1.5 Scope and Overview of Report 4
1.6 Importance of Study 6

2.0 LITERATURE REVIEW
2.1 Superalloy 7
2.1.1 Superalloy Categories and Composition 8
2.1.2 Physical Properties of Superalloy 10
2.2 Nickel-Based Superalloy 10
2.2.1 Microstructure and Heat Treatment 11
2.3 Waspaloy 13
2.3.1 Wrought Waspaloy 13
2.3.1.1 Composition and Physical Properties 14
2.3.1.2 γ Matrix 15
2.3.1.3 γ’ Precipitate 16
2.3.1.4 Carbide 16
2.3.2 Deposited Waspaloy 17
2.4 Heat Treatment
2.4.1 Heat Treatment of Wrought Waspaloy
2.4.1.1 Solution Treating
2.4.1.2 Quenching
2.4.1.3 Aging Treatment
2.4.2 Microstructure of Wrought Waspaloy
2.4.3 Effect of Temperature and Time Wrought Waspaloy
2.4.4 Heat Treatment of Deposited Waspaloy
2.4.5 Microstructure of Deposited Waspaloy
2.4.6 Effect of Temperature and Time Deposited Waspaloy

3.0 METHODOLOGY
3.1 Introduction
3.2 Material Selection and Preparation
3.3 Raw Material Preparation
3.3.1 Full Factorial Design
3.3.2 Heat Treatment Preparation
3.3.2.1 Heat Treatment Flow Chart
3.3.3 Mounting
3.3.4 Grinding
3.3.5 Polishing
3.3.6 Etching
3.4 Optical Observation
3.4.1 Procedure
3.5 X-Ray Diffraction
3.6 Hardness Testing

4.0 RESULTS AND DISCUSSION
4.1 Results
4.1.1 Characterisation of the As-received Plate
4.1.2 Microstructural Analysis (Commercial heat treatment)
4.1.3 Microstructural Analysis As-received with solution treatment (1080 °C for 4 hour)
4.1.4 Microstructural Analysis As-received with solution treatment, followed stabilization and aging process (1080 °C(4H) + 845 °C(4H) + 760 °C(16H))

4.2 Characterisation of the Deposited Nickel Base Alloy (Waspaloy)

4.2.1 Microstructural Analysis Deposited Nickel Based Alloy with the Solution treatment

4.2.2 Microstructural Analysis Deposited Nickel Based Alloy with the solution treatment followed stabilization treatment and aging at 760 °C for 16 hours

4.2.3 Microstructural Analysis Deposited Nickel Based Alloy with the solution treatment followed stabilization treatment and aging at 760°C for 30 hours

4.3 X-Ray Diffraction Analysis Results and Interpretation

4.3.1 X-Ray Diffraction Analysis Results and Interpretation As-received Waspaloy

4.3.2 X-Ray Diffraction Analysis Results and Interpretation Deposited Waspaloy

4.4 Microhardness Testing

4.4.1 Microhardness Testing As-received Waspaloy

4.4.2 Microhardness Testing As-Deposited Waspaloy

4.5 Discussion

4.5.1 Carbide Formation Analysis

4.5.2 Hardness Properties of Heat Treatment Process on Waspaloy

5.0 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation of the Project

6.0 REFERENCE

7.0 APPENDIX

7.1 Gantt Chart (A)

7.2 X-Ray Diffraction Pattern (B)

7.3 ASTM
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flowchart of scope of study</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>The elements in the superalloy composition</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Nickel based superalloy after solution treatment</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Nickel based superalloy after solution treatment</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Illustrates primary, secondary and tertiary phase</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Back-scattered electron images from SEM showing secondary and tertiary phases in Ni-base superalloys</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic illustration of the DMD process</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Optical micrographs showing solution-treated grain structures at nominal 19 temperatures of: (a) 1045 °C, (b) 1090 °C and (c) 1145 °C</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Microstructural evolution upon aging at 779 °C for aging times</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>Microstructural evolution upon aging at 796 °C for aging times</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Microstructure Waspaloy (265 HV) after the solution annealed 4h at 1035 °C (1895 °F). Glyceregia 100x</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>Intensity vs. scattering vector plot</td>
<td>22</td>
</tr>
<tr>
<td>2.12</td>
<td>Evolution of precipitate size distributions</td>
<td>23</td>
</tr>
<tr>
<td>2.13</td>
<td>Time-temperature diagram and minor phase concentration</td>
<td>24</td>
</tr>
<tr>
<td>2.14</td>
<td>Microstructure of the SMD Deposit Prior to heat treatment.</td>
<td>26</td>
</tr>
<tr>
<td>2.15</td>
<td>Microstructure of the SMD Deposit Prior to solution heat treatment</td>
<td>26</td>
</tr>
<tr>
<td>2.16</td>
<td>Microstructure of the SMD Deposit Prior to solution heat treatment</td>
<td>27</td>
</tr>
<tr>
<td>2.17</td>
<td>Microstructure of the SMD Deposit Prior to 16 hour ageing</td>
<td>27</td>
</tr>
<tr>
<td>2.18</td>
<td>Secondary electron image of dendrites from the x-y plane of a 5 layer</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Describes the four main categories of the experimental method</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Describe the flow process of the experimental</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Describe the flow process to produces Weld deposited</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Describe the flow process raw material preparation</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Describe the Waspaloy plate</td>
<td>31</td>
</tr>
</tbody>
</table>
3.6 Type of process in the heat treatment procedure
3.7 Furnace machine
3.8 Heat treatment process
3.9 Specimen placement in the furnace
3.10 Mounting machine
3.11 Grinding process
3.12 Polishing
3.13 Optical Microscopy
3.15 Illustrate test material with a diamond indenter

4.1 Micrograph Showing the Microstructure of the As-received Waspaloy
4.2 Grain Boundary Precipitates in the As-received Plate
4.3 Microstructure of the As-received Waspaloy Subjected to a Solution Treatment of 1080 °C for 4 hours
4.4 Microstructure of the As-received Waspaloy Subjected to a Solution Treatment of at 1080 °C for 4 hours, followed heat treated at 845 °C for hours and aging at 760 °C for 16 hours
4.5 The SMD Deposit Following Solution Treatment at 1080 °C for 4 hour
4.6 Microstructural upon aging at 760 °C for 16 hours. The specimen were solution treatment at: (a) 1045°C for 4 hour, stabilized at 845°C for 4 hour prior to aging at 760 °C and (b) 1045 °C for 4 hour, stabilized at 845 °C for 8 hour prior to aging at 760 °C
4.7 Microstructural upon aging at 760 °C for 16 hours. The specimen were solution treatment at: (a) 995 °C for 4 hour, stabilized at 845 °C for 4 hour prior to aging at 760 °C and (b) 995 °C for 4 hour, stabilized at 845 °C for 8 hour prior to aging at 760 °C
4.8 Microstructural upon aging at 760 °C for 16 hours. The specimen was solution treatment at: (a) 1080 °C for 25 hour, stabilized at 845 °C for 4 hour prior to aging at 760 °C and (b) 1080 °C for 25 hour, stabilized at 845 °C for 8 hour prior to aging at 760 °C.
4.9 Microstructural upon aging at 760 °C for 16 hours. The specimen were solution treatment at: (a) 995 °C for 25 hour, stabilized at 845 °C for 4 hour prior to aging at 760 °C and (b) 995 °C for 25 hour, stabilized at 845 °C for 8 hour prior to aging at 760 °C

4.10 Microstructural upon aging at 760 °C for 30 hours. The specimen were solution treatment at: (a) 1080 °C for 4 hour, stabilized at 845 °C for 16 hour prior to aging at 760 °C and (b) 995 °C for 4 hour, stabilized at 845 °C for 16 hour prior to aging at 760 °C.

4.11 Microstructural upon aging at 760 °C for 30 hours. The specimen was solution treatment at: (a) 1080 °C for 25 hour, stabilized at 845 °C for 16 hour prior to aging at 760 °C and (b) 995 °C for 25 hour, stabilized at 845 °C for 16 hour prior to aging at 760 °C.

4.12 XRD patterns for sample w (As-received with solution treatment (1080 °C for 4hour) and 2w (As received with solution treatment, followed stabilization and aging process (1080 °C(4H) + 845 °C(4H) + 760 °C(16H)).

4.13 XRD patterns for sample 3D (As-Deposited with solution treatment (1080 °C for 4hour) and 21D (As Deposited (995 °C for 25hour).

4.14 XRD patterns for sample 16D (As-Deposited with solution treated at (1080 °C(25H) + 845 °C(4H) + 760 °C(16H)) and 17D (As Deposited(1080 °C(25H) + 845 °C(8H) + 760 °C(16H))

4.15 XRD patterns for sample 18D (As-Deposited with solution treated at (1080 °C (25H) + 845 °C (16H) + 760 °C (30H)) and 24D (As Deposited (995 °C(25H) + 845 °C(8H) + 760 °C(30H)).

4.16 Microstructure of the As-received Waspaloy Subjected to a Solution Treatment at 1080 °C for 4 hours, followed heat treated at 845 °C for hours and aging at 760 °C for 16hours

4.17 Microstructure of the As Deposited Waspaloy Subjected to a Solution Treatment at 1045 °C for 4 hour, stabilized at 845 °C for 8 hour prior to aging at 760 °C for 16 hour

4.18 Microstructure of the As Deposited Waspaloy Subjected to a Solution Treatment at 1080 °C for 25 hour, stabilized at 845 °C for 16 hour prior to aging at 760 °C for 30 hour
4.19 Solution Treatment at 995°C for 25 hour, stabilized at 845°C for 16 hour to aging at 760 °C for 30 hour
LIST OF TABLES

2.1 Nominal chemical composition of superalloy 8
2.2 Illustrate physical constant in the Waspaloy 14
2.3 Limiting chemical composition in the Waspaloy 15
2.4 Nominal composition of Waspaloy wire and substrate 17

3.1 The nominal composition of the elements specimen 33
3.2 Factorial design for solution treatment deposited Waspaloy specimen 34
3.3 2^2 factorial designs in a standard order matrix 34
3.4 Heat treatment Procedure for each Sample 37

4.1 Data table of x-ray diffraction peaks for as-received samples 52
4.2 Data table of x-ray diffraction peaks for sample calcined at 750 °C for 18 hours and sintering of the calcined sample 54
4.3 Hardness Results of the as-received Plate 55
4.4 Hardness Results of the SMD deposits 56
4.5 Hardness properties of heated Nickel Based Alloy Waspaloy 60
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Temperature (°C)</td>
</tr>
<tr>
<td>N</td>
<td>Number of Previous Pulse</td>
</tr>
<tr>
<td>Q</td>
<td>Heat Source (W)</td>
</tr>
<tr>
<td>efibre</td>
<td>Fibre Efficiency</td>
</tr>
<tr>
<td>a</td>
<td>Absorptivity</td>
</tr>
<tr>
<td>C</td>
<td>Specific Heat Capacity (J kg(^{-1})k(^{-1}))</td>
</tr>
<tr>
<td>t</td>
<td>Time (h)</td>
</tr>
<tr>
<td>Tcycle</td>
<td>Period Length (s)</td>
</tr>
<tr>
<td>Tpulse</td>
<td>Pulse Length (s)</td>
</tr>
<tr>
<td>Tf</td>
<td>Duty Cycle</td>
</tr>
<tr>
<td>V</td>
<td>Traverse Speed (ms(^{-1}))</td>
</tr>
<tr>
<td>x, z</td>
<td>Linear Dimensions (m)</td>
</tr>
<tr>
<td>xpulse</td>
<td>x Position of Instantaneous Point Source</td>
</tr>
<tr>
<td>d</td>
<td>Diameter (m)</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of Experiment</td>
</tr>
<tr>
<td>OM</td>
<td>Optical Microscope</td>
</tr>
<tr>
<td>ST</td>
<td>Solution Treatment</td>
</tr>
<tr>
<td>ST&A</td>
<td>Solution Treatment and Ageing</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>TIG</td>
<td>Tungsten Inert Gas</td>
</tr>
<tr>
<td>TIT</td>
<td>Turbine Inlet Temperature</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

This chapter introduces the basic Ni-based superalloy concept of directly deposited Waspaloy, in terms of its microstructure and heat treatment process. Background and problem statement are also stated in this chapter. Finally, the objectives, scope, overview of report and importance of study are outlined.

1.1 Introduction

Nickel based superalloys are widely used in the manufacturing of aircraft component whereby their work conditions are at high temperature. It is also used for gas turbine engine components that call for considerable strength and corrosion resistance at high operating temperatures. Current and potential applications include compressor and rotor discs, shafts, spacers, seals, rings and casings, fasteners and other miscellaneous engine hardware, airframe assemblies and missile systems.

Ni-based can be either solid solution or precipitation strengthened. In the most demanding applications, such as hot sections of gas turbine engines, a precipitation strengthened alloy is required. Most Ni-based contain 10 to 20 % Cr, up to 8 % Al and Ti, 5 to 10% Co, and small amounts of B, Zr, and C. Other common additions are Mo, W, Ta, Hf, and Nb. In broad terms, the elemental additions in Ni-based can be categorized as being γ formers (elements that tend to partition to the γ matrix), γ' formers (elements that partition to the γ' precipitate, carbide formers, and elements that segregate to the grain boundaries. Elements which are considered γ formers are Group V, VI, and VII elements such as Co, Cr, Mo, W, Fe. The atomic diameters of these
alloys are only 3 to 13% different than Ni (the primary matrix element). γ' formers come from group III, IV, and V elements and include Al, Ti, Nb, Ta, Hf. Moat R.J. et al. (2009). The atomic diameters of these elements differ from Ni by 6 to 18%. The main carbide formers are Cr, Mo, W, Nb, Ta, Ti. The primary grain boundary elements are B, C, and Zr. Their atomic diameters are 21 to 27% different than Ni. Moat R.J. et al. (2008).

The suitable heat treatment will be performed to provide oxidation resistance as well as precipitation strengthening. The addition of elements such as Cr, Al, Ti and Co will create the excellent properties for these alloys. Predominantly component or products are made by casting or by machining from wrought material. However the cost for maintenance and repairing for this material is higher and need a much time. One such process is termed Shaped Metal Deposition (SMD) which involves direct metal deposition by robotic TIG welding using CAD model to control the robot tool path, thus an effective process for depositing complex three-dimensional structure for rapid manufacture and component repair. Elemental microsegregation and varying micro hardness have been observed in the as-deposited material. Heat treatment can be applied to obtain a more homogenous microstructure and uniform mechanical properties.

The general aim of this project is to study the effects of heat treatment on the microstructure of weld-deposited. This study will concentrate on Waspaloy, and consider what happen to the properties of the material as the temperature and time of the standard heat treatment are varied. Optical microscopy and scanning electron microscopy will be used to observe phases that develop in the alloy. All samples will be subjected to microhardness testing and where applicable, micro hardness testing to analyses the material’s resistance to plastic deformation. In this study, the microstructure and micro hardness of the deposits especially in terms of carbide formation will be investigated to establish the effect of condition heat treatment.
1.2 Background of the Problem

Based on the recent research, Carbides, principally M23C6, are particle that act as point strengtheners at grain boundaries. They also provide some degree of strengthening and are necessary to control grain size in the wrought Waspaloy. Although Waspaloy is a well-established wrought material, it has characteristics that make it difficult to successfully fusionweld. For example, it can be susceptible to weld and heat affected zone cracking and porosity formation. (Hussein, N.I.S. et. al., 2008)

At the elevated temperature at which these Waspaloy operates, many microstructure evolution processes can occur, such as MC carbide dissolution. In order to obtain maximum strength in the alloy, the γ' precipitate must form and grow to the optimal size.

The purpose of this research is to study the effects of heat treatment and suitable heat treatment duration on the microstructure of deposited Waspaloy compared to wrought Waspaloy. The variable temperature and time of the standard heat treatment will be used to determine the properties of the material.

1.3 Problem Statement

Based on the review of previous work, several question need to be answered in this study such as how the temperature and time affect the microstructure especially the carbide formation in direct deposited Waspaloy after being subjected to Solution Treatment, Stabilization and Ageing. That also, which heat treatment condition give the influence to the microhardness variations and finally, what is the optimum heat treatment condition to achieve optimum microhardness properly almost 420 kg mm⁻², such as hardness of wrought Waspaloy after 1080°C/4H/AC + 845°C/24H/AC + 760°C/16H/AC. (Hussein, N.I.S. et. al., 2008)
1.4 Objective

(a) Study the effect of heat treatment temperature and time carbide formation and hardness of deposited Nickel based superalloy

(b) Optimizing the mechanical properties of Nickel based superalloy

1.5 Scope and overview of report

(a) Study the effect of heat treatment temperature to of deposited Nickel based superalloy.

(b) Study the time carbide formation of deposited Nickel based superalloy.

(c) Study the mechanical properties in the deposited Nickel based superalloy structure

(d) Study the potential of deposited Nickel based alloy as a superalloy

In order to examine the microstructural features sample were cut from the deposits and heat treated in a tube furnace under argon. Three heat conditions were employed namely solution treated (ST), solution treated and age (ST&A) and ageing. ST sample were given the following variable temperature. This is for to investigate how the different time heat treatment process affected the microstructure and microhardness of the deposits Waspaloy. The samples were prepared and etched using standard procedures and were examined using optical microscopy. The microhardness of the deposits along the build direction were determined from the cross-sectional samples. Tests were performed using Vickers microhardness test instrument with load as shown in figure 1.1.
Figure 1.1: Flowchart of scope of study.
1.6 Importance of this Study

(a) To apply the advantages of deposited Nickel based superalloy in term of engineering technology.

(b) Analysis the potential of Nickel based alloy as a superalloy

(c) Develop deposited as Nickel based alloy as one of the raw materials for technology application.
CHAPTER 2
LITERATURE REVIEW

This chapter reviews metallurgy of Waspaloy and its heat treatment process. Summary of this topic is related or refer to the previous research by observing the effect of heat treatment temperature and time on carbide formation and hardness.

2.1 Superalloy

A superalloy, generally refers to high performance alloy. It is also known as a metallic alloy, which its elements of 75% of the 112 elements in the periodic table of the elements and are found towards the left-hand side and the bottom of the table the properties of superalloy basically are creep resistance at high temperature, exhibits excellent mechanical strength, oxidation resistance and corrosion.

Usually, superalloys have a matrix with an austenitic face-centered cubic crystal structure. The element base alloying is usually nickel, cobalt and chromium. Typical applications are in the aerospace, industrial gas turbine and marine turbine industry, for example for turbine blades for hot sections of jet engines. (Dempster, L.et. al.,2005)