DESIGN AND FABRICATION OF A CHECKING FIXTURE FOR A PRESS PART COMPONENT

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) with Honours.

by

IDRIS BIN SAARAN

FACULTY OF MANUFACTURING ENGINEERING
TAJUK: Design and Fabrication of a Checking Fixture for a Press Part Component

SESi PENGAJIAN: 2008-2009 Semester 2

Saya IDRIS BIN SAARAN

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓) (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
 - SULIT
 - TERHAD
 - TIDAK TERHAD

(TANDATANGAN PENULIS)

Disahkan oleh:

(TANDATANGAN PENYELIA)

Alamat Tetap:
No. 277 Felda Pasoh 4
72300 Simpang Pertang,
Negeri Sembilan

Tarikh: 15 May 2009

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this thesis entitled "Design and Fabrication of a Checking Fixture for a Press Part Component" is the results of my own research except as cited in references.

Signature : ..
Author's Name : IDRIS BIN SAARAN
Date : 15th May 2009

(C) Universiti Teknikal Malaysia Melaka
APPROVAL

This PSM submitted to the Senate of UTeM and has been as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design). The members of the supervisory committee are as follow:

(Wahyono Sapto Widodo)

(Official Stamp & Date)
WAHYONO SAPTO WIDODO
Pensyarah
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka
ABSTRACT

This thesis contains the report of checking fixture design and fabrication for a press part component; caster. The aim of this thesis is to present checking fixture for a wheel caster. Actual measurement data of wheel caster is gathered and transform into CAD data. Design of checking fixture and caster are made through the use of Solidwork design software. This report consist of six chapters which is chapter one explain about the objectives and scopes of the project, chapter two going through about the study of checking fixture design and fabrication. Chapter three is explaining about methodology chosen to achieve the objectives stated. Chapter four is explaining about result of each objective while chapter five describe about discussion of the result. Techniques of inspection are also indicated and explained. For the chapter six, it is conclude the whole project in term of the achievement of the objectives. This study is important to apply basis understanding of design and fabrication techniques.
ABSTRAK

ACKNOWLEDGEMENTS

Dear Mum and Dad at Jelebu, Negeri Sembilan, thanks for your prayers, blessing, and financial support. Not to forget my siblings that gives me a support when each time I’m feeling down. To all my friends, thanks a lot for sharing an idea to complete this thesis.

A special thanks and dedication to my supervisor, Mr. Wahyono Sapto Widodo for his untiring devotion in supervision and guiding this thesis. Also for his kindness, patient, and supporting, I wish him thanks a lot. Also to Mr. Ismail bin Abu Shah for his pleasant to read this thesis.
TABLE OF CONTENTS

Abstract .. i
Abstrak .. ii
Acknowledgement ... iii
Table of Content ... iv
List of Tables ... viii
List of Figures .. ix
List of Abbreviations ... xii

1. INTRODUCTION .. 1
 1.1 Background .. 1
 1.2 Problem Statement ... 2
 1.3 Objectives of the Project ... 2
 1.4 Scopes and Key Assumption ... 3
 1.5 Importance of the Study .. 3
 1.6 Gantt Chart for PSM 1 ... 4
 1.7 Gantt Chart for PSM 2 ... 5
 1.8 Summary ... 6

2. LITERATURE REVIEW .. 7
 2.1 Introduction .. 7
 2.2 Element of Fixtures ... 11
 2.2.1 Locators and Support .. 11
 2.2.2 Locating the Work .. 12
 2.2.2.1 Locating From a Flat Surface ... 13
 2.2.2.2 Locating From an Internal Diameter .. 14
 2.2.2.3 Locating From an External Profile .. 16
2.2.3 Clamping and Workholding Principles ... 19
2.2.4 Types of Clamp ... 19
 2.2.4.1 Strap Clamp .. 19
 2.2.4.2 Screw Clamp .. 20
 2.2.4.3 Swing Clamp .. 22
 2.2.4.4 Hook Clamp ... 22
 2.2.4.5 Quick Acting Knob .. 23
 2.2.4.6 Cam Action Clamp ... 24
 2.2.4.7 Wedge Clamp ... 25
 2.2.4.8 Toggle Action Clamp ... 26
 2.2.4.9 Power clamp ... 26
 2.2.5 Body of Fixtures .. 27
 2.2.5.1 Cast Fixture Bodies .. 28
 2.2.5.2 Welded Fixture Bodies ... 28
 2.2.5.3 Built-up Fixture Bodies .. 28
 2.3 Material of Fixture ... 29
 2.3.1 Araldite .. 29
 2.3.2 Delrin .. 30
 2.3.3 Mild Steel ... 34
 2.3.4 Aluminum .. 34
 2.4 Computer Numerical Control (CNC) ... 35

3. METHODOLOGY ... 38
 3.1 Introduction to Methodology ... 38
 3.2 Execution of Project ... 40

4. RESULT ... 41
4.1 Introduction .. 41
4.2 Design of Checking Fixture ... 41
 4.2.1 Caster Drawing .. 41
 4.2.2 Checking Fixture Design-First Design .. 43
 4.2.3 Design Improvement ... 46
 4.2.3a Fixture Body .. 46
 4.2.3b Clamping Mechanism ... 48
 4.2.3c Base Plate .. 48
 4.2.3d Support Plate ... 49
 4.2.3e Pin and Pin Holder ... 49
 4.2.3f Clamp Bracket ... 50
4.3 Preparation of CNC Program ... 51
 4.3.1 Converting Solidwork Part Drawing to Catia Part .. 51
 4.3.2 Machining Program & Simulation .. 52
4.4 Fabrication of Checking Fixture .. 54
 4.4.1 Fabrication of Fixture Body .. 54
 4.4.2 Fabrication of Base Plate and Support Plate ... 55
 4.4.3 Fabrication of Clamp Bracket ... 57
 4.4.4 Fabrication of Clamp Bracket Stand ... 58
 4.4.5 Fabrication of Pin .. 59
 4.4.6 Fabrication of Fixture Body Stand ... 60
 4.4.7 Fabrication of Holder ... 61
 4.4.8 Assembly of Checking Fixture ... 62
4.5 Summary .. 63
5. DISCUSSION .. 64
 5.1 Introduction ... 64
 5.2 Design of Checking Fixture ... 64
5.3 Preparation of CNC Program ... 66
5.4 Fabrication of Checking Fixture .. 66
5.5 Method of Inspection ... 68
5.6 Summary .. 69

6. CONCLUSION .. 70
6.1 Conclusion .. 70
6.2 Recommendation .. 71

REFERENCES .. 72

APPENDICES

A Caster
B Isometric View of Checking Fixture
C Fixture Body
D Base Plate
E Support Plate
F Pin
G Holder
H Acrylic Plate
I Clamp Bracket
J Clamp Bracket Stand
K Fixture Body Stand
L CNC Program
M Toggle Clamp
N Check Sheet
LIST OF TABLES

1.1 Gantt chart PSM 1 4
1.2 Gantt chart PSM 2 5

2.1 Elements Should Be Considered in Selection of Locator and Support 11
2.2 Clamping forces generated by screw 21
2.3 Properties of Delrin AF Blend 33
2.4 Mechanical Properties of Mild Steel 34
2.5 Mechanical Properties of Aluminum 35
2.6 Coding for Preparatory Function 37
2.7 Coding for Miscellaneous Function 37

4.1 Process Planning 53

5.1 Comparison Between Fabrication Result and Design Result 67
LIST OF FIGURES

2.1a Example of Checking Fixture 8
2.1b Example Design of Checking Fixture 8
2.1c Checking Fixture Design and Component 9
2.1d Example of Checking Fixture for Car’s Front Bumper 9
2.2 Components of Jig and Fixture 10
2.3a Types of Solid Support 13
2.3b Types of Threaded Adjustable Support 13
2.3c Equalizing Support 14
2.4a Internal Locators 15
2.4b Pin Locators and Bushing 15
2.4c Combined Used of Round and Relieved Locator 16
2.4d Types of Relieved Locator 16
2.5a Nesting Locator 17
2.5b Vee Locator 17
2.5c Fixed-stop Locator 17
2.5d Installed Fixed-stop Locator 18
2.5e Adjustable-stop Locator 18
2.5f Sight Locator 18
2.6a Strap Clamp 20
2.6b Three Classes of Lever of Strap Clamp Mechanisms 20
2.7 Application of Screw to Clamping a Part 21
2.8 Swing Clamp 22
2.9a Hook Clamp 23
2.9b Modified Hook Clamp 23
2.10 Quick-Acting Knob 24
2.11a Flat Eccentric Cam 24
2.11b Flat Spiral Cam 25
2.11c Cylindrical Cam 25
2.12 Self-Releasing Wedge Clamp 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13</td>
<td>Toggle-Action Clamp</td>
<td>26</td>
</tr>
<tr>
<td>2.14</td>
<td>Power Clamping Mechanism</td>
<td>27</td>
</tr>
<tr>
<td>2.15a</td>
<td>Application of Epoxy Resin in Semiconductor Product</td>
<td>29</td>
</tr>
<tr>
<td>2.15b</td>
<td>Application of Epoxy as Adhesion</td>
<td>30</td>
</tr>
<tr>
<td>2.16a</td>
<td>Delrin in Blue Color and Machined</td>
<td>31</td>
</tr>
<tr>
<td>2.16b</td>
<td>Delrin Material in White Color</td>
<td>31</td>
</tr>
<tr>
<td>2.16c</td>
<td>Various Shapes and Colors of Delrin</td>
<td>32</td>
</tr>
<tr>
<td>2.17a</td>
<td>HAAS Machining Center</td>
<td>36</td>
</tr>
<tr>
<td>2.17b</td>
<td>HAAS Turning Center</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Process Flow Chart of Project Execution</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Isometric View of Caster</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Datum of Part</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Distance of Two Hole</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>Distance of Bigger Contour</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>Fixture Assemblies of First Design</td>
<td>45</td>
</tr>
<tr>
<td>4.6</td>
<td>Fixture Body</td>
<td>46</td>
</tr>
<tr>
<td>4.7</td>
<td>Assemblies of New Checking Fixture</td>
<td>47</td>
</tr>
<tr>
<td>4.8</td>
<td>Toggle Clamp</td>
<td>48</td>
</tr>
<tr>
<td>4.9</td>
<td>Base Plate</td>
<td>48</td>
</tr>
<tr>
<td>4.10</td>
<td>Support Plate</td>
<td>49</td>
</tr>
<tr>
<td>4.11a</td>
<td>Pin</td>
<td>50</td>
</tr>
<tr>
<td>4.11b</td>
<td>Holder</td>
<td>50</td>
</tr>
<tr>
<td>4.12</td>
<td>Clamp Bracket</td>
<td>51</td>
</tr>
<tr>
<td>4.13</td>
<td>Step to Convert File</td>
<td>52</td>
</tr>
<tr>
<td>4.14</td>
<td>Workpiece Zero Position of Part</td>
<td>52</td>
</tr>
<tr>
<td>4.15</td>
<td>Limiting Contour</td>
<td>53</td>
</tr>
<tr>
<td>4.16</td>
<td>Indicate The Tool Path</td>
<td>54</td>
</tr>
<tr>
<td>4.17</td>
<td>Process Flow of fixture body fabrication</td>
<td>55</td>
</tr>
<tr>
<td>4.18</td>
<td>Fixture Body</td>
<td>55</td>
</tr>
<tr>
<td>4.19</td>
<td>Process Flow of Base Plate and Support Plate Fabrication</td>
<td>56</td>
</tr>
<tr>
<td>4.20</td>
<td>Fabricated Base Plate and Support Plate</td>
<td>56</td>
</tr>
</tbody>
</table>
4.21 Process Flow of Clamp Bracket Fabrication
4.22 Fabricated Clamp Bracket
4.23 Fabricated Clamp Bracket Stand
4.24 Process Flow of Clamping Bracket Stand Fabrication
4.25 Process Flow of Pin Fabrication
4.26 Fabricated Pin
4.27 Process Flow of Fixture Body Stand Fabrication
4.28 Fabricated Fixture Body Stand
4.29 Process Flow of Holder Fabrication
4.30 Fabricated Holder
4.31 Checking Fixture

5.1 Stress Occur on Caster
5.2 Fixture Body
5.3 Side View of Fixture Body
5.4 Inspection technique
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CADCAM</td>
<td>Computer Aided Design and Computer Aided Manufacturing</td>
</tr>
<tr>
<td>CMM</td>
<td>Coordinate Measuring Machine</td>
</tr>
<tr>
<td>CPU</td>
<td>Computer Processing Unit</td>
</tr>
<tr>
<td>AISI</td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>POM</td>
<td>Polyoxymethylene</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

In this several decades, manufacturing sector was expanded widely. It was generated through as an expanded of global economy. The first and third country is developed through the manufacturing sector which is validated for today. Because of the manufacturing sector expanded widely, many industries in manufacturing sector are developed. For examples are automotive, electronics, metal fabrication, and plastics. Mostly, all product manufactured are necessary an inspection process in order to conform the quality of the product. Many kind of inspection method are using such as visual inspection and through a conformance gauge. Therefore, a checking fixtures or jigs are built to fulfill the needs of the industry.

Checking fixture is a tool or devices that built as a gauge to conform whether the products produced are meet the specification or not. In a fixture design and fabrication, a basic element that should be included are, body of fixture, locating and support element, and clamping mechanisms to hold products securely during inspection. Most checking or inspection process is made manually and the common product that inspected through this technique is a part produced by a stamping machine. An advance manufacturing industries are using power generated checking fixture which is combine with pneumatic devices and controlled through a program generated via matlab or visual basic program. It is usually to inspect the attribute data of product such as light brightness and sound. For example is a manufacturer of digital cameras.
1.2 Problem Statement

When a product is manufactured through a press machine, inspection and checking process is needed in order to conform the products are meet the specification and dimension. Some products and data are able to inspect through a visual inspection but this method is just suit to the non-counted data, although it is the simplest way and less cost. Therefore, design a fabrication of a checking fixture is necessary to meet the needs of better inspection process. Through the use of checking fixture, products are inspected in allowable variations, although a fixture is design and fabricated with certain tolerances. It is because the products should be passes the inspection of several point on the products that fit to the quality data.

1.3 Objectives of the Project

The main objectives of this project study are to design and fabricate a checking fixture for a caster. The outcomes of this project study will be:

i. Design a checking fixture for a press caster.

ii. To Make a CNC program of machining process of checking fixture.

iii. Fabricate a checking fixture for a caster through CNC Machining, conventional machining, and several fabrication techniques.
1.4 Scope and Key Assumptions

The scopes of this project are:

i. To Create a CAD data from physical model of wheel caster through a manual drawing using Solidwork.

ii. To design a checking fixture and generate CNC program using CADCAM software.

iii. To fabricate a checking fixture and validate the checking fixture accuracy using Coordinate Measuring Machine (CMM).

1.5 Importance of the Study

Studies on this project generate proper understanding on the concept of jig and fixture design and fabrication. Although this project looks simply, but it is apply proper design of jig and fixture especially a checking fixture. The use of fixture element is studied to gain a best result of design and function of checking fixture. Studies on this project also improve designing skill through the use of CAD software. This checking fixture is fabricated through the use of CNC machining and conventional machining. Therefore, it will improve the understanding of CNC machining and also conventional machining. As a conclusion, this project brings the understanding of need of design and fabrication of checking fixture.
Gantt Chart for PSM 1

Table 1.1: Gantt chart PSM 1

<table>
<thead>
<tr>
<th>Activity</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selecting PSM’s Title</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discuss The Objectives and Scopes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selecting Press Part Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progress Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discuss The suitability of Part With Supervisor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collecting Actual Measurement of Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw the Part Using Cad Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design The Checking Fixture for The Press Part Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progress Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finalize The Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission of Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation for Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation of CNC Code Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.7 Gantt Chart for PSM 2

Table 1.2: Gantt chart PSM 2

<table>
<thead>
<tr>
<th>Activity</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrication of Checking Fixture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of Fixture Function and tolerances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progress Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finalize The Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission of Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation for Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.8 Summary

This chapter indicates the basic introduction about the project of designing and fabricating a checking fixture for a press part component. Also state the problem statement that makes the study is necessary and also the objectives and scopes of the project. As mention before, the main objective of this study is to design and fabricate a checking fixture for a press part component which is wheel caster. The outcomes expected from this project are to apply and understanding design concept of checking fixture that commonly practice in industry.
Chapter 2

Literature Review

2.1 Introduction

A press is a process of changing a shape of sheet metal using a force according to the shape of dies which this process is widely used in industrial practice. Most of automotive parts and metal base product are manufactured using this method. For an automotive part that produced using this technique are car’s door components, bracket for mounting engine parts, engine mounting base, etc. For metal base product that manufactured via this method are aluminum home sink, CPU casing, door knob components, etc.

At manufacturing practice, a quality conformation on the part manufactured using press method is inspected through a special tool called checking fixture. This tool is designed and fabricated for locating, holding and then checking a certain points on part. There are two types of checking fixture which the first is gauging fixtures and measuring fixtures. Gauging fixtures used to check the part against a standard of known size and can only determine if a part is in or out of tolerance and measuring actually measure a part and can indicate exactly where and by how much a part is out of tolerance.

Generally, basic components of checking fixtures are locating components, clamping mechanisms, assist support components, body of fixture, and power mechanisms if the checking fixture is operated trough automation or require devices that control the operation of checking fixture. Figure 2.2 below shows classification of the fixture component. [Kailing Li et al, 2006]
Figure 2.1(a): Example of checking fixture

Figure 2.1(b): Example design of checking fixture