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ABSTRACT   

  

This paper deals with the simulation of single-component 

two-phase fluid flows in two dimensions using the lattice 

Boltzmann method. We start by describing the theory of the 

free energy multiphase lattice Boltzmann model. After 

showing how the formulation of the particles interaction fits 

into the framework of the lattice Boltzmann simulation, 

numerical results of a droplet falling and spreading are 

presented to highlight the capability of this approach to 

simulate the dynamics of a droplet. 

 

Keywords: Lattice Boltzmann method, Landau free energy, 

multiphase, droplet dynamics 

 

1. INTRODUCTION 

 

Conventional methods for simulating two- phase flow 

consist of numerical integration of the Navier-Stokes 

equations and molecular dynamics simulations. These 

techniques are extremely computationally intensive and 

particularly difficult to implement in a random geometry. In 

recent years, the lattice Boltzmann method (LBM) has 

become an established numerical scheme for simulating 

multi-phase fluid flows (Shan and Chen, 1993, Swift et al, 

1995, Azwadi et al, 2007, Hasanuzzaman et al. 2007, 2009). 

The key idea behind the LBM is to recover the correct 

macroscopic motion of the fluid by incorporating the 

complicated physics of the problem into simplified 

microscopic models or mesoscopic kinetic equations. 

 

There are three types of multiphase lattice Boltzmann 

models that are frequently used. The first type is the so-

called coloured model for immiscible two-phase flow 

proposed by Gunstensen et al. (1991) and based on the 

original lattice gas model by Rothman and Keller (1988). 

Gunstensen et al. used coloured particles to distinguish 

between different phases. However, the coloured model has 

some limitations in that the model is not rigorously based 

upon thermodynamics, so it is difficult to incorporate 

macroscopic physics into the model. The second type of LB 

approach to model multi-component fluids was derived by 

Shan and Chen (1993) and later known as the SC model. In 

the SC model, a non-local interaction force between 

particles at neighbouring lattice sites is introduced. The net 

momentum, modified by interparticle forces, is not 

conserved by the collision operator at each local lattice 

node, yet the global momentum conservation of the system 

is exactly satisfied when boundary effects are excluded. The 

main drawback of the SC model is that it is not well 

established thermodynamically. One cannot introduce 

temperature, since the existence of any energy-like quantity 

is not known. The third type of LB model for multiphase 

flow is based on the free-energy (FE) approach, developed 

by Swift et al. (1995), who imposed an additional constraint 

on the equilibrium distribution functions. This free-energy 

approach provides more realistic contact angles and fluid 

density profiles near the vicinity of an impenetrable wall 

which cannot be easily obtained by other LBM schemes. 

The FE model conserves mass and momentum locally and 

globally, and it is formulated to account for equilibrium 

thermodynamics of nonideal fluids, allowing for the 

introduction of a well-defined temperature and 

thermodynamics.  

 

In the present study, we applied the proposed Gallilean 

invariance free energy approach (Briant et al., 2002, Azwadi 

et al, 2007) to simulate droplet dynamics on a horizontal flat 

plate at various contact angles. The simulations were carried 

out under gravitational and non-gravitational conditions. 

The obtained results were compared with the available 

results in literature. Subsequently, the phenomenon of a 

droplet falling from a top flat wall was examined and 

quantitatively compared with the benchmark solution. 

 

2. NUMERICAL METHOD 

 

The starting points for the lattice Boltzmann simulations is 

the evolution equation, discrete in space and time, for a set 

of distribution functions



f . If a two-dimensional nine-

velocity model (D2Q9) is used, then the evolution equation 

for a given 



f  takes the following form (Azwadi and Idris, 

2010):  

 



f i x  eit, t  t  f i x, t 
1


f i  f i

eq                          (1) 
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where 



t  is the time step, 



e  is the particle’s velocity, 



  is 

the relaxation time for the collision and i = 0,1,…,8. It may 

be noted that the term on the right hand side of Equation (1) 

is the collision term where the Bhatnagar-Gross-Krook 

approximation has been applied (Bhatnagar et al., 1954). 

The discrete velocity is expressed as  

 



e0  0, 0 

e1,3,5,7  cos
i 1 

4
, sin

i 1 
4











e2,4,6,8  2 cos
i 1 

4
, sin

i 1 
4











       (2) 

 



fi
eq  is an equilibrium distribution function, the choice of 

which determines the physics inherent in the simulation 

(Azwadi and Tanahashi, 2006). 

In the free-energy two-phase lattice Boltzmann model, the 

equilibrium distribution determines the physics inherent in 

the simulation. A power series in the local velocity is 

assumed. 

 



f i
eq  A B ei,u C ei,ei,uu 

Du2 Gei,ei,

       (3) 

 

where the summation, over repeated Cartesion indices, is 

understood. The coefficients A, B, C, D and 



G  are 

determined by placing constraints on the moments of 



fi
eq . 

The collision term conserves mass and momentum, and 

therefore the first moments of 



fi
eq  are constrained by 

 



f i
eq

i

                   (4) 



ei, f i
eq

i

  u                 (5) 

 

The continuum macroscopic equations approximated by the 

evolution equation correctly describe the hydrodynamics of 

a one-component, non-ideal fluid by choosing the next 

moment of 



fi
eq . This gives 

 



ei,ei, f i
eq

i

  P  u 

 u   u   u   
           (6) 

where 



   1 2 t  3 is the kinematic shear viscosity, 



P is the pressure tensor, and 



  is the time relaxation. In 

order to fully constrain the coefficients A, B, C, D, and 



G , 

a fourth condition is applied, which is 

 



ei,ei,ei, f i
eq

i

 
c2

3
u  u  u              (7) 

 

The values of the coefficients can be determined by a 

Chapman-Enskog procedure. For the constraints (4)-(7), one 

possible choice of coefficients 

 



A1  2A2, A0   12A2

A2 
Po

8c 2




4c 2
uxx  uyy 

B2 


12c 2
, B1  4B2

C2 


8c 4
,C1  4C2

D2  


16c 2
, D1  2D2, D0  12D2

G2xx 


16c 4
x 

2
 y 

2









8c 4
uxx  uyy 

G2xy  G2yx 


8c 4
x  y  



8c 4
uxx  uyy 

G2yy  G2xx

G1  4G2

        (8)   

 

The analysis of Holdych et al. (2001) shows that the 

evolution scheme, Equation (1), approximates the continuity 

equations 

 



t u  0              (9) 

 

and the following Navier-Stokes equation 

 



t u  uu  P 

   u u  u  
                          (10) 

 

We have, then, described a framework for a one-component 

free energy lattice Boltzmann model. The theory of a Van 

Der Waals fluid is very close related to the multiphase 

phenomenon. The Van Der Waals state equation, can be 

written as 

 



˜ P 
3

˜ V 2








3 ˜ V 1  8 ˜ T                                         (11) 

where 
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

˜ P 
P

PC

; ˜ V 
V

VC

; ˜ T 
T

TC

;VC  3b;

TC 
8a

27bR
; PC 

8a

27b2

                     (12) 

 

and n is the mole number, a and b are constant characteristic 

of a particular gas and R is the gas constant. P, V and T are 

as usual the pressure, volume and absolute temperature, 

respectively. 

 

 
 

Figure 1 Isotherm plot of -  

 

Figure 1 shows the plot of isotherm on a 



˜ P  ˜ V  diagram for 

various 



˜ T . For T greater than TC, (~ is removed for 

simplification), the graph looks very much like the ideal gas 

isotherms. The system separates into two phases, a gas of 

volume VG and a liquid volume VL, when T less than TC. The 

gas and liquid phases have the same pressure, PLG. The 

value of VG and VL can be calculated by recalling the 

equilibrium condition, and the chemical potentials of the 

two phases must be equal. By using the Maxwell equal area 

construction, VG and VL can be determined. For example, for 

T = 0.55, the value of VG, and VL are 0.4523 (or density 



G  

= 2.221) and 0.2043 (or density 



L=4.895) respectively. 

The thermodynamics of the fluid enters the lattice 

Boltzmann simulation via the pressure tensor. The 

equilibrium properties of a system with no surface (i.e 

periodic boundaries) can be described by a Landau free 

energy functional 

 



  dV  ,T 


2
 

2







                            (13) 

 

subject to the constraint 

 



M  dV                                                          (14) 

 

where 



 ,T   is the free energy density of the bulk phase, 

  is a constant related to the surface tension, M is the total 

mass of fluid and the integrations are over all space. The 

second term in Equation (13) gives the free energy 

contribution from density gradients in an inhomogeneous 

system. For a Van Der Waals fluid, the free energy density 

bulk phase can be written in the form 

 



 ,T  RT ln


1b









 a2                           (15) 

 

Introducing a constant Lagrange multiplier, µ, we can 

minimize Equation (15), giving a condition for equilibrium 

as 

 






  2  0                                             (16) 

 

By multiplying Equation (16) by 



 x  and integrating 

once with respect to x, we obtain the first integral 

 



   


2
 

2
constant                             (17) 

 

At the equilibrium condition, the chemical potential and 

pressure of both phases are given by 

 



  RT ln


1b











RT

1b









 2a                       (18) 

 



p 
RT

1b









 a2                                               (19) 

 

respectively. We now define 



W ,T   p meaning 

that Equation (18) and Equation (19) can be rewritten as 

 



W


2                         (20) 

 

and 

 



W 


2
 

2
                         (21) 

 

By solving Equation (21), we are able to determine the 

density profile at the interface for different values of  , as 

shown in Figure 2. Fourth-order Rungge-Kutta is used to 

solve Equation (21), and the temperature is set at T = 0.55. 

As can be seen from the graph, the value of   is related to 

the density gradient at the interface and affects the width of 

the interface. 

 

3.  NUMERICAL RESULTS 
 

3.1 Phase Separation 

 

In this section, the phase separation, which is based on the 

thermodynamic instability of the Van Der Waals fluid, is 
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simulated. If the initial state is set to an isothermally 

unstable region, according to the equation of state, the 

system will automatically separate into liquid and vapor 

phases and then achieve the equilibrium state. 

The D2Q9 model with a 101   101 lattice was used, and 

the simulation was done at T = 0.55. Other parameters are 

presented in Table 1. 

 

 
 

Figure 2 Density gradient at the interface 

 

 

Table 1: Parameters used for the simulation of phase 

separation 

 

x  y  t      

1.0 1.0 1.0 1.00 0.0001 

 

The transient behaviour of the phase separation was 

simulated in order to examine the validity of the model. 

Figure 3 shows the domain morphology at time steps of 2, 

200, 500 and 20000 separately. Although the initial bubble 

nuclei are small, the mass densities inside the droplet are 

close to their equilibrium value. The small bubbles coalesce 

and form progressively larger bubbles over time. 

Consequently, a spherical bubble at the equilibrium state is 

formed. The interface during the system evolution is clear 

and retains same thickness. In Figure 3, the density contour 

distribution clearly describes the phase separation of the 

liquid and vapour. High density (blue) is the liquid phase 

and low density (red) is the vapour phase. At the 

equilibrium condition (20000 time steps), the initial bubble 

nuclei finally form a circular bubble to minimise the surface 

tension area.  

 

 
                (a) 2 time steps      (b) 200 time steps 

 
               (c) 500 time steps   (d) 2000 time steps 

 

Figure 3 Snapshots of phase separation from 2 to 20000 

time steps 

 

3.2 Droplet spreading without gravitational effect 

 

In this section, the droplet spreading phenomenon on a 

horizontal flat plate is simulated using the approach 

described in the preceding section. Initially, the droplet was 

set at a 180
o
 contact angle or in non-wetting conditions. The 

droplet was then left to spread until it reached the 

equilibrium contact angle 



w . Figure 4 shows the droplet on 

flat surface at various contact angles. In order to verify the 

simulated results, a graph of the ratio of the droplet wet 

length a0 to the droplet height b0 was plotted and compared 

with the analytical results given by Dullean et al. (1991) and 

shown in Figure 5. 

 

    
(a) 



w= 8
0                       

(b) 



w= 24
0
 

    
                    (c) 



w= 70
0                    

(d) 



w  = 104
0 

           Figure 4 Droplet at various contact angles 

 

 
 

Figure 5 Comparison of results for the ratio of droplet 

wet length to droplet height at various droplet contact 

angles 

 

Results of the comparison in Figure 5 clearly show that the 

droplet contact angle is in good agreement with theoretical 

value when the contact angle is larger than 70
o
 or in a partial 

wetting condition to non-wetting. However, when the 

contact angle is lower than 70
0
, the computational results 
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show some disagreement with the theoretical value. This 

problem will be studied in our future research. In the next 

section, the deformation of the droplet under a gravitational 

force on a horizontal plate will be discussed. 

 

3.3 Droplet Spreading with Gravitational Effect 

 

The effect of the gravitational force plays a vital role in 

determining the shape of a droplet for several of Bond 

numbers. The dimensionless Bond number reflects the 

balance between the gravitational and capillary forces, given 

by 

 



Bo 
r 2g


                                                          (22) 

 

In our simulation, we varied the value of gravitational force 

g, to obtain various values of the Bond number. Then the 

simulated droplets at the equilibrium condition were 

compared quantitatively with those of Murakami et al. 

(1998) (not shown).  

 

 
 

Figure 6 Comparison of results for the ratio of the droplet 

wet length and droplet height at various Bond numbers 

 

The ratio of droplet wet length and droplet height is again 

plotted with the Bond number. The comparison of results 

between the present approach and the experimental data by 

Murakami et al. is presented in Figure 6. Good agreement 

can be seen between these two approaches. 

 

3.4 Droplet Falling 

 

In this section, the results for a droplet falling are presented. 

The initial droplet contact angle at the ceiling plane is set to 

90
0
, which is the same initial condition as used by Ozawa et 

al. (2005). The present result shows that the droplet starts to 

separate from the ceiling at the 15000 time step, where this 

is in quantitatively good agreement with the simulation 

results of Ozawa et al. 

 

                            
1 time step  

                             
15000 time steps 

                                
25000 time steps 

 

Figure 7 Droplet falling from flat top wall (left: present 

simulation results, right: Simulation results from Ozawa 

et al. 

 

 

 4.  CONCLUSION 

 

This paper has shown the capabilities of the lattice 

Boltzmann method in solving the two-phase system. The 

advantages of the multiphase lattice Boltzmann approach 

are not only the capability of incorporating interface 

deformation and interaction but also the interparticle 

interactions, which are difficult to implement in tradiational 

methods. The two phase-flow benchmark test showed the 

relaxation process of the droplet, which is in agreement with 

the results of other researchers. It is demonstrated that the 

free energy two-phase lattice Boltzmann model has the 

capability to simulate phase separation, droplet spreading 

and droplet falling phenomena. The phase separation has 

been correctly predicted where the value of density for both 

phases at the equilibrium state are in good agreement with 

the isothermal P-V graph. The numerical results of the 

droplet spreading and falling indicate that the two-phase 

lattice Boltzmann scheme may be applicable for simulating 

interfacial dynamics in immiscible phases. 
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