AUTOMATIC CONTROL FOR LEACHING PROCESS

AHMAD YUSRI BIN CHE MAT

APRIL 2009
AUTOMATIC CONTROL FOR LEACHING PROCESS

AHMAD YUSRI BIN CHE MAT

This Report Is Submitted In Partial Fulfillment of Requirements for the Degree Of Bachelor in Electrical Engineering (Power Electronic and Drives)

Faculty of Electrical Engineering
Universiti Teknikal Malaysia Melaka (UTeM)

APRIL 2009
“I hereby declared that I have read through this report and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Power Electronic and Drives)”

Signature : ..

Supervisor’s Name : MRS SALEHA BINTI MOHAMAD SALEH

Date : 22nd APRIL 2009
“I hereby declare that this report is a result of my own work except for the excerpts that have been clearly in the references”

Signature : ________________________________
Student : AHMAD YUSRI BIN CHE MAT
Date : 22nd APRIL 2009
Specially dedicated to

My beloved father and mother...
Che Mat Bin Ngah & Fatimah Binti Jusoh

My beloved brother and sisters ...
Ahmad Shazril Imri, Asma, Farihah, Nazila

My inspirational motivator...

All my friends,

Thank you for everything...
ACKNOWLEDGEMENTS

First of all, I would like to express my thankfulness and gratitude to Allah S.W.T who has given me all the strength that I needed to complete this final year project and also prepare this report.

With this opportunity, I would like to express my gratitude to the Faculty of electrical Engineering (FKE), Universiti Teknikal Malaysia Melaka (UTeM) generally, and especially to my supervisor Mrs Saleha Binti Mohamad Saleh for this help, advices and guidance that he gave during this project.

Also to my parents, thanks to them because of their support to me with their prayer and their love. Last but no least, I would like to thank all my friends whom have been such wonderful friends to me and also to everyone who was involved in the completion of this project. I would like to thank them for all support and encouragement to me which have given me the courage and wisdom to fulfill my final year project. Thank you.
This project used the PLC (programmable logic controller) as the controller in order to control the leaching process of Nata de Coco. This project can be separated into two parts which are hardware and software. The hardware part consists of developing the structure that absorbs tanks, valves, cages and pipes. Meanwhile the software part is developing the ladder diagram which is control the entire process after transfer it into the PLC. This project applied the touch screen to allow the users to control and monitor the leaching process of Nata de Coco. Beside that, the air pressure is used in this project to rolling the Nata de Coco in the tank while the leaching process. The pH paper used to measure the level acidity of Nata de Coco in order to stop the leaching process after pH’s value achieves the neutral level. Lastly, the analysis is making to study production of Nata de Coco in large scale. By developing of this project, the leaching process of Nata de Coco with manually in small medium industry sector can be replaced with automatic system in order to increase the productivity and reduce the cost of manpower.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TITLE PAGE</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ADMISSION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGMENT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 2
1.3 Objectives of the Project 3
1.4 Scope of the Project 3

2 LITERATURE REVIEW

2.1 Control Valve System 4
2.2 PLC Programming 5
2.3 Research study from ANZAG Industries 6
 2.3.1 What is Nata de Coco 6
 2.3.2 Leaching Process of Nata de Coco 7
2.3.3 Process of Nata de Coco 8

2.4 Process Control 10
 2.4.1 Liquid Level Control 10

2.5 Theory Programmable Logic Controller (PLC) 11
 2.5.1 Basic operation of PLC 13
 2.5.2 PLC Programming Language 14
 2.5.2.1 Ladder Diagram 14
 2.5.2.2 Instruction List 15
 2.5.2.3 Sequential Function Chart (SFC) 15
 2.5.2.4 Function Block Diagram (FBD) 16
 2.5.2.5 Structured Text (ST) 16
 2.5.3 The Advantages of Programmable Logic Controller (PLC) 16

2.6 Theory of RS-232 Serial Port 18

2.7 Theory of Valve System 20

2.8 Theory of pH Measurement 21
 2.8.1 What is pH? 21
 2.8.2 pH Measurement 21

METHODOLOGY

3.1 Methodology of the Project 23
 3.1.1 Literature review 25
 3.1.2 Gather data and analysis 25
 3.1.3 Learn about controller 25
 3.1.4 Design and Development 26
 Mechanical Part
 3.1.4.1 Aluminium Profile 27
 3.1.4.2 Iron Plate 27
 3.1.4.3 Tanks 28
 3.1.4.4 Ball Valve 28
 3.1.4.5 Pipe 29
 3.1.4.6 Water Filter 30
3.1.5 Design and Development 30
Electrical Part
3.1.5.1 Power Supply 30
3.1.5.2 Miniature Circuit Breaker (MCB) 31
3.1.5.3 Relay 32
3.1.5.4 Push Button 32
3.1.5.5 Isolator switch 33
3.1.5.6 Solenoid Valve 34
3.1.5.7 Programmable Logic Controller 34
3.1.5.8 Touch Screen 36
3.1.5.9 Control Panel Box 37
3.1.6 Designing software 38
3.1.6.1 Input and Output Address 38
3.1.6.2 Ladder Diagram of 40 Leaching Process
3.1.6.3 Display Programming 41

RESULTS AND ANALYSIS

4.1 Prototype Development 42
4.2 First Experiment 44
4.2.1 Procedure of First Experiment 44
4.2.2 Results of First Experiment 45
4.2.3 Discussion of First Experiment 46
4.3 Second Experiment 48
4.3.1 Procedure of Second Experiment 48
4.3.2 Results of Second Experiment 49
4.3.3 Discussion of Second Experiment 50
4.4 Third Experiment 52
4.4.1 Procedure of Third Experiment 52
4.4.2 Results of Third Experiment 53
4.4.3 Discussion of Third Experiment 54
4.5 Fourth Experiment 56
 4.5.1 Procedure of Fourth Experiment 56
 4.5.2 Results of Fourth Experiment 57
 4.5.3 Discussion of Fourth Experiment 58

DISCUSSION OF RESULT
5.1 Discussion 60
5.2 Based on Experiment 60
5.3 Calculation to find the size of tank for 50kg 64
Load of Nata de Coco
5.4 Comparison output between prototypes (upsizing) 66
And Anzag Industries for 50kg load in future
application

CONCLUSION AND RECOMMENDATION
6.1 Conclusion 68
6.2 Recommendation 69

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>RS-232 pin assignments (DB9 PC signal set)</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Input and Output Address</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Results of first experiment</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Calculation results of first experiment</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Results of second experiment</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Calculation results of second experiment</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>Results of third experiment</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Calculation results of third experiment</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>Result of fourth experiment</td>
<td>57</td>
</tr>
<tr>
<td>4.8</td>
<td>Calculation results of fourth experiment</td>
<td>58</td>
</tr>
<tr>
<td>5.1</td>
<td>Result for used the 50kg Nata de Coco</td>
<td>59</td>
</tr>
<tr>
<td>5.2</td>
<td>Result based on prototype</td>
<td>66</td>
</tr>
<tr>
<td>5.3</td>
<td>Result from Anzag Industries</td>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Dimension of Nata de Coco</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Leaching process with manually</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Flow chart of production Nata de Coco</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Programmable Logic Control (PLC)</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Application of PLC</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Block diagram of PLC process</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Ladder diagram</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Grafcet</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Handshake looping a PC serial connector</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Solenoid Valve</td>
<td>20</td>
</tr>
<tr>
<td>2.11</td>
<td>The pH scale</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of project methodology</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Design prototype using Solidwork software</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Aluminium profile</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Iron Plate</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Dimension surface of iron plate</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Tanks and dimension</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Ball Valve</td>
<td>29</td>
</tr>
<tr>
<td>3.8</td>
<td>PVC Pipe</td>
<td>29</td>
</tr>
<tr>
<td>3.9</td>
<td>Water filter</td>
<td>30</td>
</tr>
<tr>
<td>3.10</td>
<td>24VDC Power supply</td>
<td>31</td>
</tr>
<tr>
<td>3.11</td>
<td>(A) MCB and (B) inside of a circuit breaker</td>
<td>31</td>
</tr>
<tr>
<td>3.12</td>
<td>Relay</td>
<td>32</td>
</tr>
<tr>
<td>3.13</td>
<td>Push button</td>
<td>33</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.14</td>
<td>Isolator switch</td>
<td>33</td>
</tr>
<tr>
<td>3.15</td>
<td>Solenoid valve</td>
<td>34</td>
</tr>
<tr>
<td>3.16</td>
<td>Panasonic PLC NAIS FPO Series</td>
<td>35</td>
</tr>
<tr>
<td>3.17</td>
<td>Communication of PLC with computer and display</td>
<td>35</td>
</tr>
<tr>
<td>3.18</td>
<td>Touch screen Panasonic GT01</td>
<td>36</td>
</tr>
<tr>
<td>3.19</td>
<td>Connection touch screen with plc</td>
<td>36</td>
</tr>
<tr>
<td>3.20</td>
<td>Control panel box</td>
<td>37</td>
</tr>
<tr>
<td>3.21</td>
<td>A ribbon cable</td>
<td>37</td>
</tr>
<tr>
<td>3.22</td>
<td>Flow chart of leaching process of Nata de Coco</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Prototype of automatic control for leaching process of Nata de Coco</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Diagram of first experiment</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Diagram of second experiment</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>Diagram of third experiment</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Diagram of fourth experiment</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Graf of pH value versus Time</td>
<td>61</td>
</tr>
<tr>
<td>5.2</td>
<td>Graph of Total Time Taken and Total Water Consumption versus Leaching Time</td>
<td>63</td>
</tr>
<tr>
<td>5.3</td>
<td>Size tank for prototype (500gram)</td>
<td>65</td>
</tr>
<tr>
<td>5.4</td>
<td>Size tank for large scale (50kg)</td>
<td>65</td>
</tr>
<tr>
<td>5.4</td>
<td>Graph comparison production of Nata de Coco between Anzag Industries and prototype (upsizing)</td>
<td>67</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Journal: Comparison of Friction Models Applied to a Control Valve</td>
</tr>
<tr>
<td>B</td>
<td>Journal: Converting PLC Instruction Sequence into Logic Circuit: A Preliminary Study</td>
</tr>
<tr>
<td>C</td>
<td>Datasheet: Solenoid valve</td>
</tr>
<tr>
<td>D</td>
<td>Datasheet: PLC FPO Series</td>
</tr>
<tr>
<td>E</td>
<td>Datasheet: Touch Screen GT01</td>
</tr>
<tr>
<td>F</td>
<td>Wiring connection in control panel box</td>
</tr>
<tr>
<td>G</td>
<td>Ladder diagram of Automatic Control for Leaching Process</td>
</tr>
<tr>
<td>H</td>
<td>Menu display process on touch screen</td>
</tr>
<tr>
<td>I</td>
<td>Project Planning</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

This chapter explained about the importance of this project. The discussion included the background of the project, problem statement, objectives and scopes of project.

1.1 Background

The leaching process is a process by which inorganic, organic contaminants or radio nuclides are released from the solid phase into the water phase. This process is ready under the influence of mineral dissolution, desorption, complexation processes as affected by pH, redox, dissolved organic matter and biological (micro) activity. The leaching process itself is universal, as any material exposed to contact with water will leach components from its surface or its interior depending on the porosity of the material considered.

One of the process involve in the production of Nata de Coco is leaching process. Leaching process in Nata de Coco can be defined in general as using water to leach contaminant from the Nata de Coco. This process can kill and remove bacteria, and neutralize the pH of the Nata de Coco which is acidic after the process of fermentation. The pH of the Nata de Coco is about 2.2 to 3.0 before leaching process and after leaching process, the pH of Nata de Coco has pH of 7.0.
Control of industrial processes is a broad field of concern that cuts across virtually every area of science and technology. The basic operating principles utilized by the control function are so specialized and unique that a whole new field of study has been created. Such terms as process control automation, computer integrated manufacturing, computer numerical control, process instrumentation, and flexible manufacturing systems are commonly used to describe this particular function in industry. Control is an essential function of manufacturing.

Process control is a unique part of industry that deals with the control of variables that influence materials and equipment during the development of a product. It may range from a relatively simple operation, such as filing bottles, to maintaining a proper level in an analytical procedure that determines the content of a complex chemical solution. The end result of the operation, in most cases, is a procedure that initiates some type of control function. Controlling manufacturing process is the basis of industrial automation today.

1.2 Problem Statement

Present in era technology becomes vital part in existence diurnal. Technology can help and facilitate human make any job. This entered into manufacturing process and production Nata de Coco. Previously, manufacturing process and production the Nata de Coco carried out in manual process. With this method, need lot of staff to control stated process. The conventional method for Nata de Coco leaching process takes in excess of the time and has a low efficiency.

In current industry, the entire leaching process of Nata de Coco is ready conventionally. Manpower is needed to direct water flow at the leaching tank and drain the water in convinced time expected. Manpower is also needed to monitor the entire leaching process. Even though leaching process of Nata de Coco implicated the water flow, there is water system used in the current industry. This system used a lot of water in one moment to closing stages the leaching process. Every one of these causes the leaching process of Nata de Coco implicated a lot of manpower to work and monitor the entire process.
To solve these problems, an automated water system is able to designed and implemented on the leaching process of Nata de Coco. First of all, a water system can be designed for Nata de Coco leaching process. After the design of the water system, the automation system process can be designed subsequently. The automation system process designed using the Programmable Logic Controller (PLC). The PLC is open-off nature and the automation system process is an on-off system.

1.3 Objectives of the Project

To accomplish the target in this project, the objective below have been fixing as a guide in how to execute this project to improve its ability. The main objectives for Final Year Project (FYP) are:

i. To design and build one prototype for leaching process of Nata de Coco.
ii. To control leaching process by automatic control.
iii. To control acidity level of Nata de Coco.
iv. To develop a program that can control leaching process automatically.
v. To study and analyze the load capacity for large scale of Nata de Coco production.

1.4 Scope of the Project

To guarantee that the objectives of the project are achieved, a few important elements must be considered. The scopes for this project are as follows:

i. Design the prototype for leaching process of Nata de Coco by automatic control.
ii. Build the automatic control leaching process for 2 tanks with ½ kg load each tank.
iii. Using the PLC to control the leaching process of Nata de Coco.
iv. Study and analyze for 50kg load capacity of Nata de Coco production.
CHAPTER 2

LITERATURE REVIEW

Literature review is the study relating with the project would be exercised. Where, project want to be carried out must base to the theory, observation, recitation, understanding and documentation those related with field irons in the fire and have process arrangement and work procedure to make sure travel orderly project. Therefore, the projects want to be implemented must include building aspect project, material and equipment which are used. This matter very important for achieve objective of the project and it can also help in implementing project with more effectiveness, fluent and perfect.

2.1 Control Valve System

Comparison of Friction Models Applied to a Control Valve

(Author: Claudia García-2008) [1]

The purpose of this paper is to implement and test different friction models applied to control valves. Control valves are the most common final control elements in industry. One of the main factors that affect the behavior of the control loops is friction in control valves. Performance assessment of control loops is an important research theme, and there are many tools to detect variability in control loops.

The control valve system also has motorized proportional valves. A production and process automation with electronic regulation and control equipment requires interfaces between the electronic and fluidic control loops. The valve described for regulating the flow rate of liquids and gases represents such an interface. Motorized valves are used
wherever exact adjustment to the actual requirements is needed. There is a choice of different designs to suit the application and requisite accuracy.

2.2 PLC Programming

Converting PLC Instruction Sequence into Logic Circuit: A Preliminary Study
Author: Shuichi Ichikawa, Masanori Akinaka, Ryo Ikeda and Hiroshi Yamamoto [2]

A Programmable Logic Controller (PLC) is a kind of computer, which has been widely adopted for sequence control of industrial machinery. Although PLC is flexible and well established, the performance of PLC does not always satisfy the requirements in large and highly responsive systems.

By implementing a control program with hard-wired logic using reconfigurable devices a flexible and highly responsive system could be realized. Since an FPGA chip can contain maximally ten million logic gates, a very large control system could be implemented with a single chip. This may sometimes lead to downsizing and reduction of system components.

The ladder diagram has been widely accepted to describe PLC programs. A ladder diagram consists of one or more rungs, each of which consists of a condition part and a process part. Either the condition part or the process part can be an input/output or an instruction. The output of a rung is activated if the corresponding input condition is satisfied; otherwise, the output is deactivated. The instruction of a rung is executed if its input condition is satisfied.

Rungs are ordered, and interpreted in due order. A ladder diagram is executed in the following manner:

i. At the beginning of a ladder, all inputs are collected and stored into the corresponding internal memory elements, which are read and modified by rungs (input phase).

ii. Rungs are interpreted in due order

iii. When the bottom of a ladder is reached, all output ports are updated by the corresponding internal memory value.

iv. The ladder is then executed all over again from the input phase.
2.3 Research study from ANZAG Industries

ANZAG Industries Sdn. Bhd is a local company that categorized in small medium industry. This company specializes in manufacturing Nata de Coco. ANZAG Industries is located at small medium industries area at Bemban, Melaka.

2.3.1 What is Nata de Coco?

Nata de Coco is a chewy, translucent, jelly-like food product produced by the bacterial fermentation of coconut water. Nata de Coco is most commonly sweetened as a candy or dessert, and can accompany many things including pickles, drinks, ice cream, puddings and fruit mixes. The product originates from the Philippines. The primarily coconut water dessert is produced through a series of steps ranging from water extraction, mixing, fermentation, separating, cleaning, cutting to packaging. Commercial nata de coco is made by small farmers in the Philippines. It requires glacial acetic acid, however, and spillage of this ingredient will make the topsoil acidic. The nutritional values of coconut products vary according to the different stages of development. The mature coconut is a good source of iron and potassium. Approximately 86% of the calories in coconuts are from fat, most of which is saturated fat. [10]

The characteristics of Nata de Coco are;

i. Solid
ii. Soft
iii. Smooth surface
iv. Chewy

Figure 2.1: Dimension of Nata de Coco
2.3.2 Leaching Process of Nata de Coco

From research study in ANZAG Industries, Nata de Coco leaching process is done by using one tank. The inlet of the tank is connected using hose to the water supply and the outlet is not connected to anything. The outlet of the tank is for draining the acidic water after leaching process. At the start of leaching process of Nata de Coco, the worker pours Nata de Coco into the tank. The inlet of the tank to the water supply by using hose and the valve of the outlet is closed so that water cannot flow out. The leaching tank is stirred in the estimated interval time of every one hour. Each estimated 3 to 4 hours, the worker will drain the water from the leaching tank by opening the valve at outlet and once again the inlet is connected to water supply and water is directed to the tank again to refill the tank as shown in figure 2.2. This is to drain out the acidic water due to leaching process and refill the tank with clean water. All these stirring, draining and refilling process is repeated for 2 to 3 days until the pH of the water that leach the Nata de Coco becomes neutral, that is pH 7. The leaching process is completed when the pH of the water reaches 7 and it takes about 2 to 3 days to complete.

Figure 2.2: Leaching process with manually
2.3.3 Process of Nata de Coco

Preparing the ingredients:
- Water
- Dissolving sugar
- Extracting coconut milk

Mixing the ingredients

Filling the mixture into nata mold

Fermenting Nata de Coco in temperature 23-32°C

Cleaning nata de coco by scrapping the fungus until white layer appear

Soaking clean nata by keeping immerse in water

Cutting into cube