MOBILE MATHS COURSEWARE: PROBLEM SOLVING GUIDE FOR PRIMARY SCHOOLS

CHE KU NURAINI BINTI CHE KU MOHD

This report is submitted in partial fulfillment of the requirements for the Bachelor of Computer Science (Interactive Media)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
2008
DECLARATION

I hereby declare that this project report entitled

MOBILE MATHS COURSEWARE: PROBLEM
SOLVING GUIDE FOR PRIMARY SCHOOLS

is written by me and is my own effort and that no part has been plagiarized
without citations.

STUDENT : [Signature]
(CHE KU NURAINI CHE KU MOHD)

SUPervisor : [Signature]
(DR. SAZILAH SALAM)

Date: 23 Jun 2008
Date: 23/06/08
DEDICATION

Specially dedicated to my beloved parents,
Che Ku Mohd bin Che Ku Ngah and Wan Hasimah binti Wan Ahmad

For my supervisor, Dr Sazilah binti Salam
(UTEM)

Lastly to my beloved friends who are encouraged, guided and inspired me. Without their patience, understanding, support and most of love, the completion of this work would not have been possible. Special thanks also to all that also contributed to complete this thesis.
ACKNOWLEDGEMENTS

First, Alhamdullillah and Thank You Allah S.W.T that finally I had been finished my Projek Sarjana Muda (PSM). With the best effort to address my appreciation on the contribution of all individuals and parties involve directly and indirectly. A lot of experience gained in the documentation.

I would like to thank my supervisor Dr Sazilah Salam for her guidance throughout the execution of this project. I would also like to thank my beloved parents who has giving me support and motivation throughout my project. Last but not least, many thanks to my colleagues at Universiti Teknikal Malaysia Melaka (UTeM) and Faculty Information Communication and Technology (FTMK).

Finally, I also express my deep gratitude to those who directly or indirectly helping me in completing this PSM documentation.

Thank you.
ABSTRACT

M-learning is a fast growing concept of learning. With the emergence of new tools and media, mobile content is suggested as a powerful means to increase knowledge via the exploration of interactivity, multimedia and 2D animation for creative edutainment and communication in the future. The title of the project is “Mobile Maths Courseware: Problem Solving Guide for Primary Schools”. The target users of this application are pupils of Level 1 primary school. There are three modules incorporated in the application; 1) addition, 2) multiplication and 3) quiz. This courseware is developed to complement existing learning system. The problem is that students cannot really tackle the problem-solving questions which are assigned by their teachers. One of the solutions for such common problem is by developing mobile learning courseware that plays as an additional tool in teaching and learning process. The learning technique that is used in the project is Accelerated Learning Technique. It guides the users or students to better understand and hence, answer the question correctly. The methodology used in this project is ADDIE Model. It comprises problem solving questions and students are required to solve them accordingly. Surveys among primary school teachers were carried out in order to retrieve their opinions on this courseware. The respondents consist of 50 teachers of Sekolah Kebangsaan Ayer Keroh, Melaka. The research found that ninety percent respondents agree that the students face difficulty when it comes to problem solving questions. This is probably due to the lack of student’s ability in understanding the questions. The result also showed that students do not understand mathematical terms in problem solving questions. The findings of this study are useful for Mathematics teachers to help primary school students to answer the questions better. After the project is being implemented, the testing will be performed to gain the feedback from the users.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ATTACHMENTS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER I INTRODUCTION

1.1 Project Background 1
1.2 Problem Statements 2
1.3 Objective 6
1.4 Scope 7
1.5 Project Significance 10
1.6 Conclusion 11

CHAPTER II LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction 12
2.2 Domain 14
2.2.1 Constructivism Learning Theory

2.2.4 Learning Theory

2.3 Existing System

2.3.1 Comparison of existing system

2.3.1.1 Interactive Multimedia

CD ROM

2.3.1.2 Interactive Math Site

2.3.1.3 Electronic book

2.3.1.4 Mathematics textbook

2.3.2 Existing Techniques

2.3.2.1 Scaffolding technique

2.3.2.2 Accelerated Learning technique

2.3.2.3 Memletics Accelerated Learning System

2.3.2.4 The Step Learning In Memletics Process

2.4 Project Methodology

2.4.1 Instructional Design (Learning Applications)

2.4.1.1 Educational Goals

2.4.1.2 Course Map / Flowchart

2.4.1.3 Detailed Course Content

2.4.1.4 Test Question

2.4.1.5 Metaphor

2.5 Project Requirements

2.5.1 Software Requirements

2.5.2 Hardware Requirements

2.6 Conclusion
CHAPTER III ANALYSIS

3.1 Current Scenario Analysis
 3.1.2 Possible mobile learning scenarios
 3.1.3 Constructing Mathematic Paths in a Mobile Learning Environment
 3.1.4 The Strengths of Mobile Learning

3.2 Requirement Analysis
 3.2.1 Project Requirement (Learning Content)
 3.2.1.1 Need Analysis
 3.2.1.2 User Analysis
 3.2.1.3 Content Analysis
 3.2.1.4 Technical Analysis
 3.2.1.5 Resource Analysis
 3.2.1.6 Requirement Gathering
 3.2.2 Software Requirement
 3.2.2.1 Development’s tools
 3.2.2.2 Operating system
 3.2.3 Hardware Requirement
 3.2.4 Other Requirements

3.3 Project Schedule and Milestone

3.4 Conclusion

CHAPTER IV DESIGN

4.1 Introduction
4.2 System Architecture
4.3 Preliminary Design
 4.3.1 Storyboard Design
4.4 User Interface Design
 4.4.1 Navigation Design
6.2.1 Test User
6.2.2 Test Environment
6.2.3 Test Schedule
6.2.4 Test Strategy
 6.2.4.1 Classes of Test
6.3 Test Implementation
 6.3.1 Test Description
 6.3.2 Test Data
 6.3.3 Test Result and Analysis
 6.3.4 Analysis Testing
6.4 Conclusion

CHAPTER VII Project Conclusion
7.1 Observation on Weaknesses and Strengths
 7.1.1 Weakness of the Project
 7.1.2 Strength of the Project
7.2 Propositions for improvement
7.3 Contribution
7.4 Conclusion

REFERENCES
BIBLIOGRAPHY
APPENDICES
 Appendix 1: Storyboard
 Appendix 2: Gantt Chart
 Appendix 3: Questionnaire
 Appendix 4: Testing Questionnaire
 Appendix 5: Proposal Form
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1(a)</td>
<td>Opinion students face difficulties when answering problem solving questions</td>
<td>3</td>
</tr>
<tr>
<td>3.2.1(b)</td>
<td>Opinion students face difficulties to understand the meaning of a sentence</td>
<td>4</td>
</tr>
<tr>
<td>1.1(c)</td>
<td>Opinion to encourage student or children to use mobile courseware</td>
<td>5</td>
</tr>
<tr>
<td>1.4(a)</td>
<td>Modules of the Courseware</td>
<td>8</td>
</tr>
<tr>
<td>1.4(b)</td>
<td>Example of Nokia mobile phones that support Flash Lite 2.0</td>
<td>10</td>
</tr>
<tr>
<td>3.2.1(a)</td>
<td>Gender of Respondents</td>
<td>75</td>
</tr>
<tr>
<td>3.2.1(b)</td>
<td>Race of Respondents</td>
<td>76</td>
</tr>
<tr>
<td>3.2.1(d)</td>
<td>Usage of mobile phone</td>
<td>77</td>
</tr>
<tr>
<td>3.2.1(e)</td>
<td>Existing Teaching Aid in Mathematics</td>
<td>79</td>
</tr>
<tr>
<td>3.2.1(f)</td>
<td>Definition of mobile learning</td>
<td>80</td>
</tr>
<tr>
<td>3.2.1(g)</td>
<td>Usage of mobile phone for learning purposes</td>
<td>81</td>
</tr>
<tr>
<td>3.2.1(h)</td>
<td>Opinion to encourage student or children to use mobile courseware</td>
<td>82</td>
</tr>
<tr>
<td>3.2.1(i)</td>
<td>Opinion mobile learning courseware can help the students or children in learning mathematics</td>
<td>83</td>
</tr>
<tr>
<td>3.2.1(j)</td>
<td>Opinion mobile learning courseware as an additional tool in learning mathematics</td>
<td>84</td>
</tr>
</tbody>
</table>
3.2.1 (k) Opinion students face difficulties when answering problem solving questions

3.2.1 (l) Opinion students face difficulties to understand the meaning of a sentence

3.2.1 (m) Opinion students do not understand mathematical terms that problem solving questions

3.2.1 (n) Opinion students always make mistakes in interpreting problem solving questions

3.2.1 (o) Opinion incapable of translating problem solving questions

4.4.2(a) Access Key

5.2.1(a) List of fonts

5.2.2(b) List of graphics

5.2.3(a) Type of audio used

5.4.1(a) Software Configuration

5.4.2(a) Version Control Procedure

5.4.2(b) Version of module

5.5(a) List of implementation status

6.2.1(a) Tester

6.2.2(a) Minimum hardware requirement for testing

6.2.3(a) Test Schedule for the Project

6.2.4.1(a) Types of test conducted

6.3.1(a) Form for Functionality Testing by Multimedia Developer

6.3.1(b) Form for Usability Testing by Mathematics Teacher

6.3.1(c) Form for User Acceptance Testing by Student

6.3.3(b) Analysis Result of Usability Testing

6.3.3(c) Analysis Result of User Acceptance Testing
6.3.3(d) User Feedback
6.3.3(e) Result of Pre-Testing and Post-Testing by Student
LIST OF FIGURES

<table>
<thead>
<tr>
<th>DIAGRAM</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1(a)</td>
<td>Opinion students face difficulties when answering problem solving questions</td>
<td>3</td>
</tr>
<tr>
<td>1.1(b)</td>
<td>Opinion students face difficulties to understand the meaning of a sentence</td>
<td>4</td>
</tr>
<tr>
<td>1.1(c)</td>
<td>Opinion to encourage student or children to use mobile courseware</td>
<td>5</td>
</tr>
<tr>
<td>2.2(a)</td>
<td>Note the diagram "well-structured" learning environments (Jonassen, Mayes, & McAleese, 1993)</td>
<td>17</td>
</tr>
<tr>
<td>2.3(a)</td>
<td>CD from textbook</td>
<td>19</td>
</tr>
<tr>
<td>2.3(b)</td>
<td>Main interface of MyCD</td>
<td>19</td>
</tr>
<tr>
<td>2.3(c)</td>
<td>Main menu of MyCD</td>
<td>19</td>
</tr>
<tr>
<td>2.3(d)</td>
<td>MyCD Link of MyCD</td>
<td>19</td>
</tr>
<tr>
<td>2.3(e)</td>
<td>MyCD Link-Simulation</td>
<td>19</td>
</tr>
<tr>
<td>2.3(f)</td>
<td>Score board snapshot</td>
<td>20</td>
</tr>
<tr>
<td>2.3(g)</td>
<td>Tutorial snapshot</td>
<td>20</td>
</tr>
<tr>
<td>2.3(h)</td>
<td>e-Test snapshot</td>
<td>20</td>
</tr>
<tr>
<td>2.3(i)</td>
<td>e-Journal snapshot</td>
<td>21</td>
</tr>
<tr>
<td>2.3(j)</td>
<td>My Dictionary snapshot</td>
<td>21</td>
</tr>
<tr>
<td>2.3(k)</td>
<td>The main interface of AplusMath site</td>
<td>22</td>
</tr>
<tr>
<td>2.3(l)</td>
<td>Interface of module Homework Helper</td>
<td>22</td>
</tr>
<tr>
<td>2.3(m)</td>
<td>Interface of module Homework Helper</td>
<td>23</td>
</tr>
</tbody>
</table>
Addition

2.3(a) The screenshot depicting the menu
2.3(o) A ‘teach’ screen showing the number pad functionality
2.3(p) The learners could use the marker to highlight the pictures
2.3(q) Text book
2.3(r) Activity book
2.3.2.1(a) Levels of scaffolding discussed by Beed, Hawkins, and Roller (1991)
2.3.2.2(a) The diagram above shows the five activities of the Memletic Process
2.3.2.2(a) Mind Map Primary School Learning (Colin Rose, 1997)
2.4(a) Component in ADDIE Model
2.4.1(a) Integration of aspect pedagogy, psychology and technology
2.4.1(b) The flowchart for the courseware
3.1(a) Delivery Architecture m-learning Pro
3.1(b) Mobile learning environment software architecture
3.1(c) Instant Messaging system architecture
3.1(d) Students return their responses via the Web
3.1(e) The step-by-step process in the RFID tag senses
3.1(f) Solving and uploading a problem
3.1(g) Solving a problem in the discussion room
3.1(h) Joining the problem-solving forum
3.1(i) The strengths of mobile learning and e-learning

© Universiti Teknikal Malaysia Melaka
3.1(j) Dick and Carey Model (1989) 64
3.1(k) Linear models of problem solving found in textbooks (Polya, G, 1962) 65
3.2.1.5(a) Mathematics Year 2 Textbook Book Part 1 72
3.2.1.5(b) Mathematics Year 2 Activity Book Part 1 72
3.2.1.5(c) MyCD Mathematics Year 2 73
3.2.1.5(d) Courseware Mathematics for Primary School Year 1, Addition up to 18 73
3.2.1.5(e) Courseware Mathematics Multiplication Year 1 74
3.2.1.5(f) Video of problem solving question 74
3.2.1(a) Gender of Respondents 75
3.2.1(b) Race of Respondents 76
3.2.1(c) User group of Respondents 77
3.2.1(d) Usage of mobile phone for Yes, regularly frequency 78
3.2.1(e) Usage of mobile phone for Yes, sometime frequency 78
3.2.1(f) Usage of mobile phone for No frequency 79
3.2.1(g) Existing Teaching Aid in Mathematics 79
3.2.1(h) Definition of mobile learning 80
3.2.1(i) Usage of mobile phone for learning purposes 81
3.2.1(j) Opinion to encourage student or children to use mobile courseware 82
3.2.1(k) Opinion mobile learning courseware can help the students or children in learning mathematics 83
3.2.1 (l) Opinion mobile learning courseware as an additional tool in learning mathematics

3.2.1 (m) Opinion students face difficulties when answering problem solving questions

3.2.1 (n) Opinion students face difficulties to understand the meaning of a sentence

3.2.1 (o) Opinion students do not understand mathematical terms in problem solving questions

3.2.1 (p) Opinion students always make mistakes in interpreting problem solving questions

3.2.1 (q) Opinion incapable of translating problem solving questions

4.2 (a) Mobile Learning System Architecture
(Source: Salam S, 2008)

4.2 (b) System architecture for the proposed courseware

4.2 (c) The flow of the system

4.3.1 (a) Montage

4.3.1 (b) Main

4.3.1 (c) Menu

4.3.1 (d) Common Addition Terms

4.3.1 (e) Example Addition Tutorial

4.3.1 (f) Example Multiplication Tutorial

4.3.1 (g) Quiz Module

4.3.1 (h) Example of question in Quiz Module

4.3.1 (i) About

4.3.1 (j) Exit

4.4.1 (a) Navigation flow of the system

4.4.2 (a) The access keys for keypad navigation for
4.4.2 (b) Example quiz interface use input text 114
4.4.3 (a) Example of text in tutorial interface 115
4.4.3 (b) Colour used in menu interface 116
4.4.3 (c) Animated text at montage 117
4.4.4 (a) Quiz module is link frame by frame 118
4.4.4 (b) Modules designed on stage 118
4.4.4 (c) Files imported to the stage 119
4.4.4 (d) The Menu button linked by frame 119
4.4.4 (e) Action script linked by frame 120
5.2.2(a) Production of graphic from sketch picture 126
5.2.2(b) Production of graphic from book 126
5.2.2(c) Production of graphic from online resource 126
5.2.2(d) Example of graphic production 126
5.2.2(e) Example of interface 127
5.2.2(f) Example of interface 128
5.2.3 (a) Sonic Foundry Sound Forge 8.0 interface 129
5.2.3(b) The sample rate and bit 130
5.2.4 (a) Frame by frame animation flash 133
5.3 (a) Step 1 is importing a file to the library 134
5.3 (b) Browse for the file that is to be imported 134
5.3 (c) Timeline (drag the imported file into the timeline) 135
5.3 (d) File saves as .fla 135
5.3 (e) Publish file to save as .swf 136
5.3 (f) Test Movie the file 136
5.3 (g) File is tested in emulator 137
5.3 (h) Mobile screen devices 138
5.3 (i) Action Script soft keys 138
5.4.1(a) Browser at My Computer 140
5.4.1(b)	Choose the storage of the content to be saved	141
5.4.1(c)	Drag flash content from your PC to one of the two directories	141
5.4.1(d)	Imaging folder	142
5.4.1(e)	Flash player	142
5.4.1(f)	Flash player file that has been uploaded	143
6.2.2(a)	Minimum hardware requirement for testing	153
6.3.4(a)	Graph for Group of Tester	167
6.3.4(b)	Graph for Functionality Testing	167
6.3.4(c)	Graph for Usability Testing	168
6.3.4(d)	Graph for User Acceptance Testing	169
6.3.4(e)	Result of Understanding Testing	169
LIST OF ABBREVIATION

ADDIE - Analysis, Development, Design, Implementation and Evaluation model
BMP - Extension for the Bitmap image file format.
CD - Compact Disc
CD-ROM - CD-ROM
GSM - Global System for Mobile
GPRS - General Packet Radio Service
HCI - Human Computer Interaction
JPEG - Joint Photographic Experts Group
M-Learning - Mobile Learning
MLE - Mobile Learning Environment
MMS - Multimedia Messaging Service
LCMS - Learning Content Management System
PC - Personal Computer
PDA - Personal Digital Assistants
PSM - Projek Sarjana Muda
RFID - Radio Frequency Identification
SOAP - Simple Object Access Protocol
SMS - Short Message Service
UTEc - Universiti Teknikal Malaysia Melaka
UMTS - Universal Mobile Telecommunications System
WAP - Wireless Application Protocol
Wi-Fi - Wireless Fidelity
XML - Extensible Markup Language
LIST OF ATTACHMENTS

<table>
<thead>
<tr>
<th>ATTACHMENT</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mathematics Year 1 Syllabus Provided By Ministry Of Education</td>
<td>179</td>
</tr>
<tr>
<td>2</td>
<td>Mathematics Year 2 Syllabus Provided By Ministry Of Education</td>
<td>182</td>
</tr>
<tr>
<td>3</td>
<td>Mathematics Year 3 Syllabus Provided By Ministry Of Education</td>
<td>183</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Project Background

There are many different kinds of technology that can be classed as 'mobile'. Mobile to most means 'portable' and 'movable'. It also seems to implicate a 'personal' as opposed to 'shared' context of use, and the terms 'mobile' and 'personal' are often used but a device might be one without necessarily being the other. Mobile learning or m-learning means learning that is enhanced with mobile tools and mobile communication. Mobile learning is an exciting art of using mobile technologies to enhance the learning experience. Mobile phones can be blended to engage and motivate learners, any time and anywhere. Learning materials that are delivered on mobile phones may reach many people that can be hard to reach with any other media. Nowadays, we can see mobile phones are the most used mobile device among the students.

This has developed a mobile learning application called "Mobile Maths Courseware: Problem Solving Guide for Primary Schools". It is a mathematics educational courseware. This is for primary school students. The report will detail out the description of all content, including graphics, text, audio and also animated graphic. The main has three modules. There are addition, multiplication and quiz. The user needs to choose which modules they want to learn. The problem is students cannot solve the problem solving type of question that given by their teacher. To solve this problem, mobile learning courseware is developed as an additional tool in learning mathematics.
Mobile learning technique that used in this project is Accelerated Learning Technique. It will guide the user or student to understand and answer the question. Three modules that have been developed in this project are addition, multiplication and quiz. In this project, it will introduce the basic of math for primary school. The question are provided to test whether the concepts and to test their ability to answer the questions. The questions are problem solving questions and students have to solve it. The question helps students understanding of math in a way that is both informative and entertaining where it is guided by multimedia elements. The organization that will use this application is primary school students, teachers and also their parents.

From this mobile project, multimedia skills can be applied. For example Adobe Flash CS3 is a main tool used for developing this project. Through the use of sound, graphics, text and also animation can create the feeling and the emotions of the user. It enhances them to understand the overview of the topic. Further explanation will be brief in the next section.

1.2 Problem Statements

Majority of students face difficulties when answering problem solving type of questions. They have difficulty solving mathematics word problems because they often cannot decide what to do to solve the problem. Most textbooks are not very helpful when it comes to teaching students how to solve math problems. They typically provide a four-step formula such as read the problem, decide what to do, compute, and check the answer.

The students do not understand mathematical keyword or clues frequently used in problem solving type of questions. Understanding the problem is at the core of reading the problem. To understand the problem, students need to be able to represent the problem, which provides the basis for deciding what to do to solve the problem. From early on, most students acquire the skills and strategies needed to