PIC PWM CONTROLLER

EE LENG HONG

This report Is submitted In Partial Fulfillment Of Requirement For The Degree of Bachelor In Electrical Engineering (Industry Power)

Fakulti Kejuruteraan Elektrik
Universiti Teknikal Malaysia Melaka

May 2008
"I hereby declared that this report is a result of my own work except for the excepts that have been cited clearly in the references."

Signature: [Signature]
Name: EE LENG HONG
Date: 06/05/2008
To my parents, my brothers, my sisters and my lover
ACKNOWLEDGEMENT

First of all, I am grateful because I was given a chance to take part in this project. This is a wonderful opportunity for me to harness my skills in both the programming and hardware area.

In this acknowledgement segment, I wanted to thank is my project supervisor, Encik Azziddin Bin Mohamad Razali for allowing me to do this project. He had given me some idea on how to do my project and also on writing this dissertation. He has taught and has guided us along the way in doing this project. He also had given some inner idea in completing this project. Through his guidance, I was able to complete this project as expected.

And for the person that I forgot to mention in the segment, I would like to say a big thank you to you all. Without the support and help that you all gave me, this project would not be so faster to accomplish.
ABSTRACT

Nowadays, Microchip PIC has become one of the popular tools in the area of controller especially in robotics and motor control. The main objective of this project is to control the speed of low power DC motor by varying the duty ratio of Pulse Width Modulation (PWM) waveform, produced by PIC16F877A microcontroller. In addition, observation of the DC motor performance has been made by investigating the relationship between PWM frequency and the DC motor performances. MIKROC software is used to write and verify the PIC source code in C language. Finally, the simulation of the controller circuit and the PIC programming has been performed by using PROTEUS 6 LIFE software. The results show that the speed of the DC motor is proportional to the PWM duty ratio. The speed of the DC motor will increase if the duty ratio is increase within a certain limit. Furthermore, the voltage spike at the DC motor input terminal can be decrease by increasing the frequency of PWM pulse.
ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TOPICS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUPPERSVOR APPROVAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROJECT TITLE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDIXES</td>
<td>xv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Project Synopsis</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Project Objectives</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Scope Of Work</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Expected Result</td>
<td>3</td>
</tr>
<tr>
<td>1.6</td>
<td>Advantage Of PIC PWM Controller</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction To Microcontroller</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Microcontroller</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Variation of Microcontroller</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3</td>
<td>PIC Microcontrollers</td>
<td>7</td>
</tr>
</tbody>
</table>
2.1.4 Choosing PIC Device 7
2.1.5 Development Languages 8
2.1.6 Programmer 9
2.1.7 Workflow 10

2.2 Introduction To PIC16F877A 11
2.2.1 Specification For PIC16F877A 11
2.2.2 Pin Diagram 12
2.2.3 I/O Ports 13
2.2.4 Programming Overview 14

2.3 PIC PWM Motor Driver 15
2.3.1 Overview 15
2.3.2 PIC PWM 16
2.3.3 Circuit 16

2.4 Types Of Motors 19
2.4.1 DC Motor 19
2.4.2 Brushed DC Motor 19
2.4.3 DC Gear Motor 19
2.4.4 Servo Motor 20
2.4.5 AC Motor 20

3 METHODOLOGY

3.1 Introduction 22
3.1.1 Project Flowchart 23

3.2 PIC PWM Controller 24

3.3 Software 24
3.3.1 MIKROC 6.2 Software 24
3.3.2 PROTEUS 6 LIFE Software 29

3.4 Hardware 32
3.4.1 PIC16F877A Microcontroller Circuit 32
3.4.2 L298 Motor Driver Circuit 33
3.4.3 The Full Schematic Of PIC PWM Controller 34

3.5 Measure Waveform From Oscilloscope 35
4 RESULTS

4.1 Hardware Parts 37
4.2 Software Parts 38
 4.2.1 Function Of Each Button 38
 Programming
4.3 Analysis between Hardware Connection 39
 Waveform And Simulation Waveform
 From PROTEUS 6 LITE SOFTWARE
4.4 Effect Of Fast Recovery Diode To The 51
 Output DC Motor Waveforms

5 DISCUSSION AND CONCLUSION

5.1 Discussion 55
5.2 Conclusion 57

6 FUTURE DEVELOPMENT

6.1 Introduction 58

PROJECT PLANNING 59

REFERENCE 60

APPENDIXES 61
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The difference of common tasks and features needed</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>I/O ports in PIC16F877A</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>The function of DC motor</td>
<td>33</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect Fast Recovery Diode to the output waveform of DC motor</td>
<td>56</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Difference types of PIC</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Block Diagram for Microcontroller</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Workflow Diagram for complete Operation of PIC</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Pin Diagram for PIC16F877A (40 pin)</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Programming Structure</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>The block diagram of PIC DC motor control</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>This circuit can be used for the 6W Maxon motors in the lab</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>The low-power circuit in test board</td>
<td>17</td>
</tr>
<tr>
<td>2.9</td>
<td>The diagram of high power circuit</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>The diagram of simple op-amp circuit</td>
<td>18</td>
</tr>
<tr>
<td>2.11</td>
<td>The simple op-amp circuit in test board</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Process flowchart for whole project development</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Block diagram of basic concept PIC PWM controller</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Diagram of open new project window</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Diagram of setting condition before start the new project</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>Diagram of new project before write down programming</td>
<td>26</td>
</tr>
<tr>
<td>3.6</td>
<td>Define 4 buttons for different duty ratio and frequency</td>
<td>27</td>
</tr>
<tr>
<td>3.7</td>
<td>Define different duty ratio and frequency for four buttons with each other</td>
<td>27</td>
</tr>
<tr>
<td>3.8</td>
<td>Setting PWM registers to produce PWM signals</td>
<td>28</td>
</tr>
<tr>
<td>3.9</td>
<td>Build the source code</td>
<td>28</td>
</tr>
<tr>
<td>3.10</td>
<td>The Compiler will check for errors and display the result message</td>
<td>29</td>
</tr>
<tr>
<td>3.11</td>
<td>Pick devices from the library of PROTEUS 6 LIFE</td>
<td>29</td>
</tr>
<tr>
<td>3.12</td>
<td>Pick out PIC16F877A before construct the circuit</td>
<td>30</td>
</tr>
<tr>
<td>3.13</td>
<td>Pick out all components and construct the circuit</td>
<td>30</td>
</tr>
<tr>
<td>3.14</td>
<td>Insert the hex file to PIC16F877A before simulation</td>
<td>31</td>
</tr>
</tbody>
</table>
3.15 Simulate the circuit and observe waveform from oscilloscope 31
3.16 PIC16F877A microcontroller circuit 32
3.17 L298 motor driver circuit 33
3.18 The full schematic of PIC PWM controller 34
3.19 The measure waveform from oscilloscope 35
3.20 Insert hex file 35
3.21 Step of program and read source code 36
3.22 The PIC programmer 36
4.1 The hardware of PIC PWM controller 37
4.2 Output PIC16F877A waveform takes from hardware with 39
 20 % duty ratio and 5 KHz frequency
4.3 Output PIC16F877A waveform takes from simulation with 39
 20 % duty ratio and 5 KHz frequency
4.4 Output L298 Motor Driver waveform takes from hardware with 40
 20 % duty ratio and 5 KHz frequency
4.5 Output L298 Motor Driver waveform takes from simulation with 40
 20 % duty ratio and 5 KHz frequency
4.6 Output DC motor waveform takes from hardware with 41
 20 % duty ratio and 5 KHz frequency
4.7 Output DC motor waveform takes from simulation with 41
 20 % duty ratio and 5 KHz frequency
4.8 Output PIC16F877A waveform takes from hardware with 42
 80 % duty ratio and 5 KHz frequency
4.9 Output PIC16F877A waveform takes from simulation with 42
 80 % duty ratio and 5 KHz frequency
4.10 Output L298 motor driver waveform takes from hardware with 43
 80 % duty ratio and 5 KHz frequency
4.11 Output L298 motor driver waveform takes from simulation with 43
 80 % duty ratio and 5 KHz frequency
4.12 Output DC motor waveform takes from hardware with 44
 80 % duty ratio and 5 KHz frequency
4.13 Output DC motor waveform takes from simulation with 44
 80 % duty ratio and 5 KHz frequency
4.14 Output PIC16F877A waveform takes from hardware with 1.5 KHz frequency and 40% duty ratio

4.15 Output PIC16F877A waveform takes from simulation with 1.5 KHz frequency and 40% duty ratio

4.16 Output L298 Motor Driver waveform takes from hardware with 1.5 KHz frequency and 40% duty ratio.

4.17 Output L298 Motor Driver waveform takes from simulation with 1.5 KHz frequency and 40% duty ratio

4.18 Output DC motor waveform takes from hardware with 1.5 KHz frequency and 40% duty ratio

4.19 Output DC motor waveform takes from simulation with 1.5 KHz frequency and 40% duty ratio

4.20 Output PIC16F877A waveform takes from hardware with 100 KHz frequency and 40% duty ratio

4.21 Output PIC16F877A waveform takes from simulation with 100 KHz frequency and 40% duty ratio

4.22 Output L298 Motor Driver waveform takes from hardware with 100 KHz frequency and 40% duty ratio

4.23 Output L298 Motor Driver waveform takes from simulation with 100 KHz frequency and 40% duty ratio

4.24 Output DC motor waveform takes from hardware with 100 KHz frequency and 40% duty ratio

4.25 Output DC motor waveform takes from simulation with 100 KHz frequency and 40% duty ratio

4.26 Effect of Fast Recovery Diode to DC motor waveform with 20% duty ratio and 5 KHz frequency

4.27 Effect of Fast Recovery Diode to DC motor waveform with 80% duty ratio and 5 KHz frequency

4.28 Effect of Fast Recovery Diode to DC motor waveform with 1.5 KHz and 40% duty ratio

4.29 Effect of Fast Recovery Diode to DC motor waveform with 100 KHz and 40% duty ratio
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC</td>
<td>Programmable Interface Controller</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>I/O</td>
<td>Input and Output</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
</tbody>
</table>
LIST OF APPENDIXES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Source Code For PIC PWM Controller</td>
<td>61</td>
</tr>
<tr>
<td>B</td>
<td>L298 Data Sheet</td>
<td>64</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Project Synopsis

This project attempts to investigate the effect of the PWM frequency and duty ratio to the speed and performance of the DC motor. Two set of experiment are constructed in order to the investigation. In the first experiment, the duty ratio will be varied while the frequency is fixed with a certain value. Mean while in the second experiment, the PWM frequency will be varied while the duty ratio is fixed.

C programming is used to write the source code for producing PWM waveform. MIKRO C software is used to compile the source code and compile it to hex file which is downloaded to the PIC chip.

There are five push buttons in the designed circuit. The first push button is a reset button which is used to interrupt or stop the motor rotation. The second and third push buttons are used to change the duty ratio while the frequency is in fix condition. The second push button is used to produce 20% or 0.2 of duty cycle with 5 KHz PWM frequency. The third push button is used to produce 80% or 0.8 of duty cycle with 5 KHz PWM frequency. The fourth and fifth push buttons are used to change the frequency while the duty ratio is in fix condition. The fourth push button is used to produce 1.5 KHz frequency with 40% or 0.4 duty cycle. The fifth push button is used to produce 100 KHz frequency with 40% or 0.4 duty cycle.

The waveform at the pin 17 (RC2) from PIC16F877A microcontroller, outputs of L298 motor driver and DC motor will be measured by the oscilloscope.
1.2 Project Objectives

Firstly, these project objectives research the relationship between the duty cycle and frequency for the DC motor control.

Secondly, the waveform of output PWM PIC16F877A microcontroller L298 motor driver and DC motor will be researched to analyze the ripple effects and turn off spike.

Thirdly, the source code must be written down and simulation must be made.

Fourthly, comparison waveform between hardware and simulation will be made to analyze and observe the different or effects at both waveform.

Lastly, the effects of fast recovery diode will be researched to analyze the effects to the output waveform of DC motor.

1.3 Scopes Of Work

To investigate the high duty ratio and low duty ratio at the same frequency, two set of push buttons will be set up in the inputs of PIC16F877A microcontroller with 20% duty ratio and 80% duty ratio at 5 KHz frequency. To investigate the high frequency and low frequency at the same duty ratio, two set of push buttons will be set up in the inputs of PIC16F877A microcontroller with 1.5 KHz frequency and 100 KHz frequency at 40% duty ratio. Observation will be analyzed in the output waveform of PIC16F877A microcontroller, L298 motor driver and DC motor in both conditions. In addition, ripple effects and turn off spike also can be observed from this waveform.

The source code can be written down by using MIKRO C software and simulation can be made by PROTEUS 6 LIFE software. All the waveforms are taken from output of PIC16F877A microcontroller, outputs of L298 motor driver and DC motor.
The comparison waveform between hardware and simulation will be analyzed and discussed. In addition, the output waveforms of DC motor will be taken and observed when the adding fast recovery diode in the DC motor and no adding fast recovery diode in the DC motor conditions.

1.4 Problem Statement

Commonly, the variable resistor is used to adjust the resistance to control the speed of DC motor. This is because it can reduce and increase the flowing of the current to the DC motor and prevent the DC motor rotating slowly or quickly until DC motor burn. If the PIC microcontroller is used to control the speed of DC motor, the exactly frequency and duty cycle can be set and not need to adjust the resistance to reduce or increase frequency or duty cycle.

In a power electronic application, not all the IC can produce the range of duty cycle from 0 to 1.0. But using the PIC microcontroller, the range of duty cycle can be longer or shorter exactly from 0 to 1.0. For example, the SG3524 IC only has the minimum duty cycle about 0.45 even though it can produce PWM signal.

1.5 Expected Result

Firstly, the speed of DC motor of 20% full speed of duty cycle must be slower than 80% full speed of duty cycle at the 5 KHz frequency. This is because the speed will increase when the duty cycle will increase.

Secondly, the speed of DC motor of 100 KHz frequency will be less turn off spike than the speed of DC motor of 1.5 KHz at 40% duty ratio. [1] The DC motor will run smoother when the frequency will increase.

Thirdly, there are no any ripple effects and turn off spike appear at the output waveform of DC motor from the simulation. The speed of DC motor can be
researched from simulation when the duty cycle is varied. In addition, there are no any distortions appear in the waveforms.

Lastly, adding the fast recovery diode to the DC motor can reduce ripple effects in the output waveform of DC motor. When the frequency is higher, the ripple effects can be reduced. From simulation, there are no any ripple effects to the output waveform of DC motor.

1.6 Advantage Of PIC PWM Controller

1. Speed
 The speed of DC motor can be increased or reduced by setting source code to PIC microcontroller.

2. Decrease harmonic
 PWM signal which are produced by PIC16F877A microcontroller can make the reduction in filter requirement to decrease the harmonic.

3. Output Voltage amplitude
 This controller is easier to control the output voltage amplitude because it can maintain the DC supply voltage at the full speed.

4. Duty cycle
 This controller can longer or shorter the range of duty cycle from 0 to 1.0

5. Electronic device
 This controller can be used to control the supply of electrical power to another device such as in speed control of electric motors, volume control of Class D audio amplifiers or brightness control of light sources and many other power electronics applications.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction To Microcontroller

2.1.1 Microcontroller

Microcontroller is an essential electronic device that change the electronics design topology since its inception few decades ago. Basically, microcontroller is a computer system that is fabricated in a single integrated chip. A microcontroller chip consists of a Central Processing Unit (CPU) memory modules, and several input/output peripherals.

Figure 2.1: Different Types of PIC
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction To Microcontroller

2.1.1 Microcontroller

Microcontroller is an essential electronic device that change the electronics design topology since its inception few decades ago. Basically, microcontroller is a computer system that is fabricated in a single integrated chip. A microcontroller chip consists of a Central Processing Unit (CPU) memory modules, and several input/output peripherals.

Figure 2.1: Different Types of PIC
2.1.2 Variation of Microcontroller

The microcontroller is used as a device that can form the basis of an embedded system for electronics applications. It provides a flexible low cost solution to bridge the gap between single chip computers and the use of large numbers of discrete logic chips.

Depending on various manufacturers, microcontroller is divided into several categories. For examples, 8 bit, 16 bit, 32 bit and so on. Most commonly used microcontroller is 8 bit microcontroller. It is simple, small in size, and capable of doing most things related with control and input or output devices.

As for the manufacturers, the competitiveness of the microcontroller market has encouraged several big name companies to share a piece of the pie. Those companies are:

a. Motorola (68HC11,68HC12)
b. Intel (8051)
c. Atmel (AVR)
d. Microchip (PICmicro)

2.1.3 PIC Microcontrollers

The PIC microcontrollers are based on RISC (Reduced Instruction Set Computer) architecture; therefore use a relatively small number of instructions. Most PIC used 35 instructions compared to some general purpose microprocessors (like Motorola 68000 and Intel 8085) that may have several hundred.

Important feature of modern PIC devices is the use of electrically erasable and programmable Flash memory for program storage. These Flash memory devices are often denoted by the use of the letter “F” as part of the device coding (example: PIC16F84). Flash devices are much easier to work with for one-off prototyping because erasure and reprogramming is greatly simplified.

2.1.4 Choosing PIC Device

When choosing which PIC is suitable for a particular project, it is important to select a device that is well supported. Supported mean the chips is widely available off the shelves and also in programming environment that intended to use on software development.

In this country, the most popular PIC chips that are widely available are PIC16F84A and its so called “big-brother” PIC16F877A. However, Microchip Inc, the company that produces and manufactures PIC, has already stop the production for PIC16F84A and offer few alternative as the replacements such as 16F88 and 16F628A (which are more powerful and feature-packed chip compare to its predecessor).

Other than that, you also must ensure that the PIC incorporates all of the peripheral I/O facilities that you will need.
Table 2.1: The difference of common tasks and features needed

<table>
<thead>
<tr>
<th>Common tasks</th>
<th>Features needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple display devices such as LCD and LED</td>
<td>Adequate number I/O ports are needed to accommodate the devices.</td>
</tr>
<tr>
<td>PC-based project</td>
<td>Communication interface (UART, RS232/RS485, USB etc)</td>
</tr>
<tr>
<td>Analog sensors, such as temperature sensor</td>
<td>Built-in A/D converter can make the project easier to construct and implement.</td>
</tr>
</tbody>
</table>

2.1.5 Development Languages

There are several development languages developed to program a microcontroller to perform its specific application. Three main languages that been used are Assembly Language (ASM), BASIC and C.

Assembly Language (ASM)

Many people still use assembly code because of inertia. Its have been used for years since the microcontroller inception. Assembly language is considered as low level language and closely related to machine code. In ASM, the users need to be hardware oriented as the programming need the user to know in detail the hardware registers and configuration.

BASIC

In computer programming, BASIC (an acronym for Beginner’s All purpose Symbolic Instruction Code) is a simple programming language that is very easy to learn. The instruction is simple and straightforward, hence its simplicity.