AUTOMATED QA INSPECTIONS USING VISION SENSOR

ARUMUGAM S/O SATIVELO

This report is submitted in partial fulfillment of the requirements for award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

April 2008
Tajuk Projek : Automated QA Inspections Using Vision Sensor
Sesi Pengajian : 2007/2008

Saya ARUMUGAM a/l SATIVELO mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (√) :

 □ SULIT* (Mengandungi maklumat yang berdaur keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

 □ TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

(TANDA TANGAN PENULIS)

Alamat Tetap: No.19, Halaman Mayang 4, Bukit Gedung, Bayan Baru, 11900 Bayan Lepas, Pulau Pinang.

Tarikh: 9-MAY-2008

Disahkan oleh:

(TANDA TANGAN PENYELIA)

YUSMARNITA BT YUSOP
Pensyarah
Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK),
Universiti Teknikal Malaysia Melaka (UTeM),
Kerung Bermunci 1200,
Ayer Keroh, 75450 Melaka

Tarikh: 9-MAY-2008
"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature : [Signature]

Author : ARUMUGAM S/O SATJVELO

Date : 09-MAY-2008
"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of bachelor of Engineering (Industrial Electronics) With Honours."

Signature : [Signature]
Supervisor's Name : MDM. YUSMARNITA BINTI YUSOP
Date : 09-MAY-2008
Dedicated to my beloved family especially my parents, lecturers, and also to all my friends
ACKNOWLEDGEMENT

I have just completed my Final Year Project (PSM) and thesis in sufficient time. First of all, I would like to take this opportunity to express my appreciation to some organizations and individuals who have kindly contributed for my final year project in UTeM. With the cooperation and contributions from all parties, the objectives of the project; soft-skills, knowledge and experiences were gained accordingly even this is just part of the whole project. Furthermore, I would like thank me supervisor, Mrs. Yasmarnita bt. Yusop for the proper guidance, cooperation and involvement throughout my Final Year Project. Her effort to ensure the successful and comfort ability of students under her responsibility was simply not doubtful. Moreover, I would like to extend my sincere acknowledgement to my parents and family members who have been very supportive for the past six months. Their understanding and support in term of moral and financial were entirely significance towards the project completion. Last but not list, my appreciation goes to my fellow student in UTeM, especially for who are from FKEKK. Their willingness to help, opinions and suggestions on some matters, advices and technical knowledge are simply precious while doing upon completion of my final year project.
ABSTRAK

ABSTRACT

This project is an upgraded version of the current system in the QA department in a company. The QA team usually inspects their product dimension by taking some sample or hourly sample from production. Since budget is a big factor most of the companies inspect the sample manually by using QA tools. When it’s done manually there are chances to have human made errors. Beside that, not all the produced product will be inspect. Using this automated QA inspection, we can overcome all the mistakes and have a greater inspection of the entire produced product dimension. With the help of this system we can inspect both in specification and out of specification product dimension. Also, this system will record the quantity of inspected product in the control unit (PC). The inspected product quantity record can be dividing to 2 main types, in specification and out of specification means accept and reject. The status of inspected product will show in display unit (PC Monitor). This system can be used in any kind of industries to improve the inspection process and the product quality.
TABLE OF CONTENTS

PROJECT TITLE
borang pengesahan status laporan
declaration
supervisory declaration
dedication
acknowledgement
abstrak
abstract
table of contents
list of table
list of figures
list of abreviations
list of appendixs

CHAPTER I
1.1 Project Introduction
1.2 Problem Statement
1.3 Objective
1.4 Scope of Work
1.4.1 Vision Sensor
1.4.2 Control Unit
1.4.3 PLC System
1.4.4 Display Board
1.4.5 Conveyor
CHAPTER II

2.1 PREVIOUS STUDY AND RESEARCH
 2.1.1 MACHINE VISION
 2.1.2 COMPUTER VISION
 2.1.3 SMART CAMERA
 2.1.4 PIXELS
 2.1.5 PROGRAMMABLE LOGIC CONTROLLER

CHAPTER III

3.1 PROCEDURES AND METHODOLOGIES
 3.1.1 LITERATURE REVIEWS AND RESEARCHES
 3.1.2 DESIGN CIRCUIT

CHAPTER IV

4.1 RESULTS
 4.1.1 HARDWARE
 4.1.2 SOFTWARE
4.2 DISCUSSION

CHAPTER V

5.1 CONCLUSION
5.2 SUGGESTION
LIST OF TABLE

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.2.1</td>
<td>Measurement Data for Inspection</td>
<td>45</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Algorithm Performance</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>System block diagram</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2</td>
<td>FMS 200 product</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Automated QA Inspection using Vision Sensor System</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.1</td>
<td>An example of an unmanned land-based vehicle</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3.1</td>
<td>Early smart camera</td>
<td>16</td>
</tr>
<tr>
<td>2.1.4.1</td>
<td>An image with a portion greatly enlarged</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4.1.1</td>
<td>Alternative ways of reconstructing an image</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4.5.1</td>
<td>Phosphor dots in a color CRT display</td>
<td>23</td>
</tr>
<tr>
<td>2.1.4.7.1</td>
<td>Display standards comparison</td>
<td>24</td>
</tr>
<tr>
<td>2.1.5.1</td>
<td>PLC and input/output arrangements</td>
<td>25</td>
</tr>
<tr>
<td>2.1.2.2.1</td>
<td>Control panel with PLC</td>
<td>27</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Flow chart of the project process</td>
<td>35</td>
</tr>
<tr>
<td>3.1.1.1.1</td>
<td>PCI Card</td>
<td>37</td>
</tr>
<tr>
<td>3.1.1.2.1</td>
<td>Software Front Panel</td>
<td>39</td>
</tr>
<tr>
<td>3.1.1.2.1</td>
<td>Extension cable</td>
<td>39</td>
</tr>
<tr>
<td>3.1.2.1</td>
<td>Display Board with PLC System</td>
<td>40</td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>Ladder Diagram</td>
<td>42</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>Display Board (After Inspection Status)</td>
<td>43</td>
</tr>
<tr>
<td>4.1.1.3</td>
<td>Display Board (Under Inspection Status)</td>
<td>44</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>Product Measurement Method</td>
<td>45</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Inspection Status Pass</td>
<td>46</td>
</tr>
<tr>
<td>4.1.2.3</td>
<td>Inspection Status Fail</td>
<td>47</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Field of View Calculation</td>
<td>49</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Block Diagram for PLC and Vision System Communication</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCD</td>
<td>Charge Coupled Device</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal-Oxide Semiconductor</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>RS232</td>
<td>Recommended Standard 232</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>VGA</td>
<td>Video Graphic Array</td>
</tr>
<tr>
<td>SVGA</td>
<td>Super Video Graphic Array</td>
</tr>
<tr>
<td>MV</td>
<td>Machine Array</td>
</tr>
<tr>
<td>AGV</td>
<td>Automated Guided Vehicles</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Aerial Vehicles</td>
</tr>
<tr>
<td>SLAM</td>
<td>Simultaneous Localization and Mapping</td>
</tr>
<tr>
<td>dpi</td>
<td>Dot per Inch</td>
</tr>
<tr>
<td>ppi</td>
<td>Pixel per Inch</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photographic Expert Group</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode Ray Tube</td>
</tr>
<tr>
<td>RGB</td>
<td>Red, Green, Blue</td>
</tr>
<tr>
<td>RGBA</td>
<td>Red, Green, Blue, Alpha</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>HSL</td>
<td>Hue, Saturation, Lightness</td>
</tr>
<tr>
<td>HSV</td>
<td>Hue, Saturation, Value</td>
</tr>
<tr>
<td>GIF</td>
<td>Graphic Interchange Format</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format</td>
</tr>
<tr>
<td>QVGA</td>
<td>Quarter VGA</td>
</tr>
<tr>
<td>XGA</td>
<td>Extended Graphic Array</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>WXGA</td>
<td>Wide XGA</td>
</tr>
<tr>
<td>SXGA</td>
<td>Super XGA</td>
</tr>
<tr>
<td>UXGA</td>
<td>Ultra XGA</td>
</tr>
<tr>
<td>WUXGA</td>
<td>Widescreen Ultra XGA</td>
</tr>
<tr>
<td>QXGA</td>
<td>Quad XGA</td>
</tr>
<tr>
<td>WQXGA</td>
<td>Wide Quad XGA</td>
</tr>
<tr>
<td>WQXSXGA</td>
<td>Wide Quad Super XGA</td>
</tr>
<tr>
<td>QUXGA</td>
<td>Quad Super XGA</td>
</tr>
<tr>
<td>WQUXGA</td>
<td>Wide Quad Ultra XGA</td>
</tr>
<tr>
<td>WUQSXGA</td>
<td>Wide Ultra Quad Super</td>
</tr>
<tr>
<td>DCS</td>
<td>Distributed Control System</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional Integral Derivative</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>LD</td>
<td>Ladder Diagram</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/ Output</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of View</td>
</tr>
</tbody>
</table>
List of Appendices

<table>
<thead>
<tr>
<th>NO.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Vision System Software Specification</td>
<td>54</td>
</tr>
<tr>
<td>B</td>
<td>PCI Card Specification</td>
<td>55</td>
</tr>
<tr>
<td>C1</td>
<td>Cable Connector Datasheet 1</td>
<td>56</td>
</tr>
<tr>
<td>C2</td>
<td>Cable Connector Datasheet 2</td>
<td>57</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Project Introduction

This project is about inspecting final output of a product in a production line for example FMS 200 product as in Figure 1.1.2. This system will inspect product either satisfying its specification or not, means the final output is in specification or out of specification. The main focus is the screw on top of the product. This system will inspect the tightness of screw regarding the gap between the head of screw and the body base. Vision sensor or smart camera will sense the product and calculate dimension of the product according given data. There is a control unit (PC) to control and command vision sensor by using a software. Otherwise, the vision system will help by the PLC system to control the display unit and conveyor system. The system basic block diagram was shown in Figure 1.1.1. Unlike other QA tools, this vision sensor will fixed in final test department and can be control from other place by using the control unit (PC). Figure 1.1.3 shows the real design of the system which consist of vision system and the PLC system.
Figure 1.1.1: System block diagram

Figure 1.1.2: FMS 200 product
1.2 Problem Statements

This system is designed to overcome certain problems that faced by most of factory especially in QA department. For example most of QA department done their inspection process by manually using the QA tools. There are high possibilities to have errors in measuring products dimension like human made errors. This kind of unwanted problems can be overcome by using this system. Usually, inspection on products done by taking some sample product, hourly inspection, or first sample product and last sample product. This kind of system is less effective and the probabilities for rejected products to miss the inspection are high. By using automated QA inspection system, every produced product will go through the inspection process and out of specification product will be noticed. This system will improve the inspection process and output products qualities are ensured. Beside that, the inspection process will take time if done manually by quality assurance inspectors. This automated QA inspection system will overcome this kind of problem as a timesaving system.

1.3 Objective

The objectives of this project are:

a) To have a higher quality assurance where this system will go for higher accuracy.

b) To reduce the errors or reject product in the outgoing product.

c) To ease the QA department in inspection techniques where the inspection will done by automatically.

d) To save manpower and as timesaving system.

e) To reduce the cost in product inspection since budget is a big factor for most of company.
1.4 Scopes of work

1.4.1 Vision sensor

The vision sensor functions as an inspector. This unit use to view or sense the present product. The sensed product data will transfer to control unit (PC) using connector. The field of view or sense can be adjusted. Field of view (FOV) is proportional to value of accuracy.

1.4.2 Control unit (PC)

The control unit (PC) is the heart of the system. It is use to command the vision sensor by using software. The product specification will upload here and as an input for display board.

1.4.3 PLC system

PLC system use to control the inspection process. Output from PLC system is use as an input for conveyor or display board. This system is easy to control and portable to communicate with other device. Using software CX-Programmer.

1.4.4 Display board

The display board functions to show us the status of the present product in the view of vision sensor. There are two statuses that show by the display board. First, system ready for inspection, green lamp will ‘ON’. Second, stage show the product is under inspection, red lamp ‘ON’.
1.4.5 Conveyor

The conveyor system was designed to move the product. In this project, rotational conveyor used to rotate the product. Hereby, the four screws in every angle of the product will pass the vision sensor field of view.

Figure 1.1.3: Automated QA Inspection using Vision Sensor System
CHAPTER II

LITERATURE REVIEW

2.1 Previous Study and Research

2.1.1 Machine Vision

Machine vision (MV) is the application of computer vision to industry and manufacturing. Whereas computer vision is mainly focused on machine-based image processing, machine vision most often requires also digital input/output devices and computer networks to control other manufacturing equipment such as robotic arms. Machine Vision is a subfield of engineering that encompasses computer science, optics, mechanical engineering, and industrial automation. One of the most common applications of Machine Vision is the inspection of manufactured goods such as semiconductor chips, automobiles, food and pharmaceuticals. Just as human inspectors working on assembly lines visually inspect parts to judge the quality of workmanship, so machine vision systems use digital cameras, smart cameras and image processing software to perform similar inspections.

Machine vision systems are programmed to perform narrowly defined tasks such as counting objects on a conveyor, reading serial numbers, and searching for surface defects. Manufacturers favour machine vision systems for visual inspections that require
high-speed, high-magnification, 24-hour operation, and/or repeatability of measurements. Frequently these tasks extend roles traditionally occupied by human beings whose degree of failure is classically high through distraction, illness and circumstance. However, humans may display finer perception over the short period and greater flexibility in classification and adaptation to new defects and quality assurance policies.

Computers do not 'see' in the same way that human beings are able to. Cameras are not equivalent to human optics and while people can rely on inference systems and assumptions, computing devices must 'see' by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features such as Pattern recognition engines. Although some machine vision algorithms have been developed to mimic human visual perception, a number of unique processing methods have been developed to process images and identify relevant image features in an effective and consistent manner. Machine vision and computer vision systems are capable of processing images consistently, but computer-based image processing systems are typically designed to perform single, repetitive tasks, and despite significant improvements in the field, no machine vision or computer vision system can yet match some capabilities of human vision in terms of image comprehension, tolerance to lighting variations and image degradation, parts' variability etc.

2.1.1.1 Components of a Machine Vision System

A typical machine vision system will consist of several among the following components:

1. One or more digital or analog camera (black-and-white or color) with suitable optics for acquiring images
2. Camera interface for digitizing images (widely known as a "frame grabber")
3. A processor (often a PC or embedded processor, such as a DSP)