PROJEK SARJANA MUDA (PSM)

SUBMITTED BY:
LAILA NORANA BINTI HASBOLLAH
B050410020

This Technical Report for Projek Sarjana Muda is Submitted to
Faculty of Manufacturing Engineering
Universiti Teknikal Malaysia Melaka
In Partial Fulfillment for Bachelor of Manufacturing Design

Faculty of Manufacturing Engineering
Universiti Teknikal Malaysia Melaka
(May / 2008)
JUDUL:
DEVELOPMENT OF DATABASE SYSTEM FOR METALLIC ALLOY SELECTION USING MS VISUAL BASIC

Sesi Pengajian:
SEMESTER 2 2007/2008

Saya LAILA NORANA HASBOLLAH mengaku membenarkan laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
4. *Sila tandakan (√)

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
☐ TIDAK TERHAD

(LAILA NORANA HASBOLLAH) (EN. SHAJAHAN BIN MAIDIN)
Alamat Tetap: Cop Rasmi:
No 75, Felda Teratai Jengka 21,
26400 Bandar Jengka,
Pahang Darul Makmur.

Tarikh: _______________________

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby declare that this report entitled “DEVELOPMENT OF DATABASE SYSTEM FOR METALLIC ALLOY SELECTION USING MS VISUAL BASIC” is the result of my own research except as cited in the references.

Signature : ...
Author’s Name : ..
Date : ...
This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design). The members of the supervisory committee are as follow:

En. Shajahan bin Maidin

(PSM Supervisor)

Official Date and Stamp:
ABSTRACT

The material selection is one of complex of product design and systematic approach must be done in order to make the best material choice. Lack of material selection support tools can lead to incorrect material choice, which may subsequently result in failure and incur unacceptable costs. A computerized material selection system can therefore be of great value in helping product designers to select the most appropriate material for a given set of product requirements. The anticipated outcome includes consideration of other selection model, more alloy records, some multi-media features and internet links. This project reviews the development of the material selection strategy. Ms Visual Basic 6.0 will be used as a tool to develop the programming. Ms Access 2000 will be used as the database.
ABSTRAK

DEDICATION

For everybody in my life that had supported me so far, especially my dearest mother, father, lecturers and friends thanks for the memories here in UTeM even you didn’t realize it ...
ACKNOWLEDGEMENT

Utmost gratefulness to Almighty Allah, because of his witness and abundance on me to accomplish the project within the time provided. The project had gone accordingly to plan and finished on time.

First of all, I would like to recognize with sincere thanks and appreciation to my supervisor, En. Shajahan Bin Maidin for his priceless advises, help and support given to me from commencing from the Title Selection until the completion of the project. The encouragement and guidance that have been given is really appreciated.

In addition, to express my deep gratitude to my family who have offered frequent encouragement, support and understanding for me since the beginning of the project. Also not be forgotten my entire friend that have encourage me and spare some bright ideas for my report.
TABLE OF CONTENT

Abstract i
Abstrak ii
Dedication iii
Acknowledgement iv
Table of contents v
List of figures ix
List of tables xi
List of Abbreviations, Symbols and Specialized Nomenclature xii
List of Appendices xiii

1.0 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 2
1.3 Objective 3
1.4 Scope of the Project 4
1.5 Important of the Project 4
1.6 Organization 5
2.0 LITERATURE REVIEW

2.1 Metallic Alloys

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2 Types of Metallic Alloys</td>
<td></td>
</tr>
<tr>
<td>2.1.2.1 Ferrous Alloys</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2.1.1 Alloys Steel</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3 Designation</td>
<td>11</td>
</tr>
</tbody>
</table>

2.2 Material Selection

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2 Factors in Material Selection</td>
<td></td>
</tr>
<tr>
<td>2.2.2.1 Interrelated constraints</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2.2 Criteria and Tools for Material Selection</td>
<td>18</td>
</tr>
</tbody>
</table>

2.3 Visual Basic 6.0

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Introduction</td>
<td>19</td>
</tr>
<tr>
<td>2.3.2 Significant Language Features</td>
<td>22</td>
</tr>
</tbody>
</table>

2.4 Microsoft Access

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 Introduction</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2 Access Database</td>
<td>29</td>
</tr>
</tbody>
</table>
3.0 METHODOLOGY

3.1 Introduction 35
3.2 Flowchart 36
3.3 Details 38

4.0 DESIGN OF PROGRAMMING

4.1 Project Background 40
4.2 Material Specification 41
 4.2.1 Specification of Material
 4.2.1.1 Physical Properties
 4.2.1.1.1 Density 42
 4.2.1.2 Mechanical Properties
 4.2.1.2.1 Young’s Modulus 44
 4.2.1.2.2 Elongation 46
4.3 Design of Programmed Using Ms Visual Basic
 4.3.1 Problem Defined 48
 4.3.2 Proposed Interface 48
 4.3.3 Develop Logic for Action Object
 4.3.3.1 Flow Chart 52
 4.3.3.2 IPO Table & Pseudocode 52
 4.3.4 Write & Test Code for Object 53
5.0 RESULT

5.1 Database Architecture Design 55

5.1.1 Physical Properties

5.1.1.1 Density 56

5.1.2 Mechanical Properties

5.1.2.1 Hardness, Brinell 58

5.2 Interface Design 61

6.0 DISCUSSION

6.1 System Development 78

6.2 Database Architecture 79

6.3 Interface Development 81

6.4 Database Connection & Codes 83

7.0 CONCLUSION

7.1 Conclusion 84

7.2 Future Work 85
LIST OF FIGURES

1. Example of Metallic Alloys 7
2. Classification Scheme for the Various Ferrous Alloys 9
3. Six Computer Operation 21
4. The Visual Basic Start-Up Dialog Box 23
5. The Visual Basic Environment 24
6. Form Page 25
7. Toolbox 26
8. Properties Window 26
9. Form the Event Command 27
10. Project Window That Contains the List of Object 27
11. Example of Table 29
12. Example of Queries 30
13. Example of Form 31
14. Example of Reports 32
15. Access Database System 34
16. Diversity of Material 44
17. Material Selection Chart 44
18. Young’s Modulus of Material 46
19. Chart of Young’s Modulus 46
20. Elongation of Material 47
21. Chart of elongation of Material 48
22. Form Welcoming to User (frmfirstpage) 50
23. Form About Us (frmAbout) 50
24. Form Sign In (frmlogin) 51
25. Form Search (frmsearch) 51
26. Form Introduction (frmFirstpage) 52
27. Form View (frmView) 52
29. Interface Design for Welcoming Form before Run 62
30. Interface Design for Welcoming Form after Run 63
31. Interface Design for Introduction Form before Run 65
32. Interface Design for Introduction Form after Run 66
33. Interface Design for Search Form before Run 69
34. Interface Design for Search Form after Run 69
35. Interface Design for Sign In Form 74
36. Interface Design for About Us Form 75
37. Interface Design for View Form 77
<table>
<thead>
<tr>
<th></th>
<th>LIST OF TABLES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Composition Ranges for Alloys Steels</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Composition of Stainless Steel</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Interrelated Constraints</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Density for Metallic Alloy</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>Vapor Pressure for Metallic Alloy</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>Hardness, Brinell</td>
<td>61</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI</td>
<td>-</td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>SAE</td>
<td>-</td>
<td>Society for Automotive Engineering</td>
</tr>
<tr>
<td>Mn</td>
<td>-</td>
<td>Manganese</td>
</tr>
<tr>
<td>Si</td>
<td>-</td>
<td>Silicon</td>
</tr>
<tr>
<td>Cu</td>
<td>-</td>
<td>Cuprum</td>
</tr>
<tr>
<td>HSLA</td>
<td>-</td>
<td>High Strength Low Alloy</td>
</tr>
<tr>
<td>VB</td>
<td>-</td>
<td>Visual Basic</td>
</tr>
<tr>
<td>lbl</td>
<td>-</td>
<td>Label</td>
</tr>
<tr>
<td>frm</td>
<td>-</td>
<td>Form</td>
</tr>
<tr>
<td>cmd</td>
<td>-</td>
<td>Command</td>
</tr>
<tr>
<td>cbo</td>
<td>-</td>
<td>Combo Box</td>
</tr>
<tr>
<td>ADODC</td>
<td>-</td>
<td>ActiveX Data Objects Data Connection</td>
</tr>
<tr>
<td>AADODB</td>
<td>-</td>
<td>ActiveX Data Objects Database</td>
</tr>
<tr>
<td>GUI</td>
<td>-</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>IPO Table</td>
<td>-</td>
<td>Input Output Table</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Gant Chart PSM I
Gant Chart PSM II

Data from Ms Access

Density
Vapor Pressure
Viscosity
Poisson’s Ratio
Hardness, Brinell
Hardness, Knoop
Hardness, Rockwell B
Hardness, Vickers
Tensile Strength, Ultimate
Tensile Strength, Yield
Elongation at Break
Reduction of Area
Modulus of Elasticity
Bulk Modulus
Electrical Resistivity
Magnetic Permeability
Magnetic Susceptibility
CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF THE PROJECT

Design is the process of translating a new ideas into the detailed information from which a product can be manufactured. Each of its stages requires decision about the material which the product is made and the process of making it. Engineers often face the need to evaluate the best materials that can be used for each type of product.

This project will broadly involve in developing an appreciation of the role and significant of material selection in product design and manufacture and obtaining a detailed understanding of principles of material selection.

Besides that, it is intended to expose and be familiar with the concepts of database systems and conducting a critical review of literature on computerized material selection systems. By learning MS Visual Basic and Microsoft Access software tools and developing the skills needed to implement the system in question.
Identifying and obtaining material data and information for the metallic alloys concerned. The implementation of the material data is added by using the development software such as Microsoft Access and Microsoft Visual Basic.

The project is started with collecting and analyzing data for metallic steel alloy to include in the project database. Next, all the data gathered is arranged in database by using Ms Access before it was linked with Ms Visual Basic. With the usage of visual basic, the user interface is then created before the coding and relation is build.

In addition, the project is then successfully develops with interactive and creative interface and also included the user friendly basis.

1.2 PROBLEM STATEMENT

Material selection is one of the complexes and arduous part of the product design process and it entails a systematic approach in order to make the best material choice. It requires searching through a vast collection of material data and information. Lack of material selection support tools can lead to incorrect material choice, which may subsequently result in failure and incur unacceptable costs.

Steel are the most important engineering materials, and cover a wide range of alloys based on iron and carbon. The strength of iron-carbon alloys, particularly after heat treatment, has been exploited for thousands of years. Modern steels and ferrous alloys have mostly been developed since the Industrial Revolution. Alloy steels are mostly fairly cheap, covering a range of carbon contents (0.1-1.0%). The medium to high carbon content steels respond well to heat treatment (such as "quenching and tempering") to give very high strength and good toughness for gears, driveshaft’s, pressure vessels, tools. Alloy steels containing other elements as well as carbon are classified into low alloy and high alloy, depending on the
amount of additional alloying elements. Heat-treated high alloy steels give very high strengths, but are more expensive. All steels have a high density and a high Young's modulus. The strength and toughness of alloy steels can be varied enormously by alloying, working and heat treatment. Alloy carbon steels rust easily, and must be protected by painting or other coatings.

A computerized material selection system can therefore be of great value in helping product designers to select the most appropriate material for a given set of product requirements. The anticipated outcome includes consideration of other selection model, more alloy records, some multi-media features and internet links.

1.3 OBJECTIVES

i. To identify and obtain the material data and information for metallic alloys properties.

ii. To familiar with the concepts of database systems.

iii. To learn MS Visual Basic and Microsoft Access.

iv. To implement a computerized metallic alloys selection system by making use MS Visual Basic and Microsoft Access software tools.
1.4 SCOPE

The project will involve ways or procedure to find the best selection of materials. The purpose of the study is to understand principles of material selection in production design and obtain material data for the metallic alloys concerned. Some of the consideration need to be evaluated is the design, the material properties such as physical properties, mechanical properties, thermal properties and optical properties. There are several types of materials to be considered in this project such as AISI 1000 Series Steel, AISI 4000 Series Steel, AISI 6000 Series Steel, AISI 8000 Series Steel and other material. All the related material will be recorded into Microsoft Access before the programming done by Microsoft Visual Basic and read all the data recorded in the table.

1.5 IMPORTANT OF THE PROJECT

There is a vast collection of materials that need to be considered by engineers before making any design. The material selection is one of complex of product design and systematic approach must be done in order to make the best material choice. Lack of material selection support tools can lead to incorrect material choice, which may subsequently result in failure and incur unacceptable costs. A computerized material selection system can therefore be of great value in helping product designers to select the most appropriate material for a given set of product requirements. The anticipated outcome includes consideration of other selection model, more alloy records, some multi-media features and internet links.
1.6 ORGANIZATION OF THE REPORT

Chapter 1: Introduction
This chapter consists of background of the problem, problem statement, objectives, scope and importance of the project.

Chapter 2: Literature Review
This chapter includes the literature of materials types and material properties. The literature about Visual Basic and Microsoft Access also included.

Chapter 3: Methodology
The chapter consists of flow chart and detailed explanation.

Chapter 4: Design of Programming
This chapter consists of material specification of metallic alloys and proposed interface design that will be used in Visual Basic 6.0.

Chapter 5: Result
This chapter consists of result of database of metallic alloys by using Ms Access and interface programming as well as code by using Ms Visual Basic. The result is shown before and after debugging of the programmed.

Chapter 6: Discussion
This chapter will discuss about the error that occur while debugging the programmed and all related discussion regarding the project.

Chapter 7: Conclusion
This chapter consists of the conclusion for the whole project from the starting until the programmed is finish successfully.
CHAPTER 2

LITERATURE REVIEW

2.1 METALLIC ALLOYS

2.1.1 INTRODUCTION

Metallic materials are inorganic substances composed of one or more metallic elements, but may also contain some nonmetallic elements. Metals' tightly packed atomic and orderly crystalline structure result in many of their usual physical properties, including; opaque to and reflective of light, electrically and thermally conductive, ductile (bends before it breaks), the ability to be formed into useful shapes, and strength at room temperature and often remain so even at elevated temperatures. Metals are usually heated to form alloys (combinations of two or more metals) in the liquid state. These alloys then exhibit physical properties different from their individual metal components. Metals and alloys are typically classified as ferrous and nonferrous. Ferrous metals and alloys contain iron as their primary metallic element. Steel is an example of a ferrous alloy. Nonferrous metals and alloys contain metals other than iron as their primary metallic element. Examples of nonferrous metals include aluminum, copper and lead. [17]
An alloy is a metal composed of more than one element in which the major component is a metal. Most pure metals are either too soft, brittle or chemically reactive for practical use. Combining different ratios of metals as alloys modify the properties of pure metals to produce desirable characteristics. The aim of making alloys is generally to make them less brittle, harder, resistant to corrosion, or have a more desirable color and luster. Engineering alloys include the cast-irons and steels, aluminum alloys, magnesium alloys, titanium alloys, nickel alloys, zinc alloys and copper alloys. For example, brass is an alloy of copper and zinc. The example of metallic alloys is shown in Figure 1 below. [18]