
 396

The Construction of Balanced Bounding-Volume Hierarchies using

Spatial Object Median Splitting Method for Collision Detection

Hamzah Asyrani Sulaiman
1
, and Abdullah Bade

2

1
Universiti Teknikal Malaysia Melaka,

76100 Durian Tunggal, Melaka, Malaysia,
2
 Universiti Malaysia Sabah,

88400 Kota Kinabalu, Sabah, Malaysia,
1
asyrani@utem.edu.my ,

2
abade08@yahoo.com

ABSTRACT

Finding two or more contact points between

rigid bodies simulation is always a

fundamental task in virtual environment.

Furthermore, the contact point needs to be

accurately reported as soon as possible

within 30-60 frames per second (fps)

between moving polyhedral. This article

introduced an efficient splitting method that

is able to divide the bounding-volume of

Axis Aligned Bounding-Box (AABB)

hierarchies into a balanced tree. The

construction of well-balanced tree will helps

to improve the speed of the intersection

between rigid bodies’ objects.

KEYWORDS

Collision Detection, Bounding-Volume

Hierarchies, Algorithm

1 INTRODUCTION

Creating real-time virtual environment

consisting various 3D objects such as

rigid bodies, deformable bodies and fluid

simulation definitely a huge task for

designers and researchers. Numerous

strategies in developing such

environment need to be considering

before the simulation is suitable to be

running in the respective platform i.e.

targeting computer. In the simulated

virtual environment, a rigid object

isconsidered as a static object that cannot

be deformed no matter what artificial

force is been done. For example,

buildings cannot be crumbled into rubble

when anything happens. Meanwhile, a

deformable object is something that can

be altered in their shape according to the

time and for that has been applied to

them. Fluid simulation consists of any

fluid mechanism that been implemented

in the simulated virtual environment

such as water simulation, raining or gas

simulation.

In the simulation, however, few

tasks need to be concurrently simulated

with the virtual environment. Among

these tasks are lighting, shadowing,

texturing, culling, and collision

detection. These tasks are considered as

a realistic add-on whereas in order to

maintain the real-time virtual

environment, these tasks need to be

implemented in order to make the virtual

environment becoming more realistic. If

it is not, the simulated environment

might become dull and cannot be

realistic enough to attract the other

people depending on what the

application is targeted.

The realistic effect that has been

put into virtual environment in order to

make the simulation more interesting is

collision detection. Many other fields

such as networking and medical where it

 397

involves component intersection

checking have used the term collision

detection itself. Collision detection is the

critical component for simulated

environment as it has been used to

measure the realism between intersecting

object in motion. Most researchers refer

collision detection as an important tool

for robotic, medical simulation, and

computer games. Real-time simulation

always tries to simulate the collision

detection process as realistic as possible

and thus the researchers have come out

with numerous techniques in order to

discuss between two or more intersected

object.

The collision detection consists of

two parts, which are discrete collision

detection and continuous collision

detection. Compared to continuous

collision detection (CCD), discrete

collision detection (DCD) is much faster

in term of collision checking while CCD

is more accurate. These two attributes

cannot share the same advantages as

increasing speed will eventually

decreasing the accuracy of collision

detection.

2 RELATED WORKS

Significant amount of studies have

revealed that collision detection between

two objects can be divided into two

phases, which are broad phase and

followed by narrow phase. [1] suggested

that broad phase stands for the first

phase of detecting object interference by

checking which objects has collided.

Next, narrow phase will be carried out to

determine the exact collisions of both

objects and which parts of this pairs has

collided with detailed information.

Apparently, there are many types

of algorithm to detect object interference

in virtual environment that can be used

in urban simulation. According to [1],

these algorithms are; feature-based

algorithms, simplex based algorithms,

image-space based algorithms, volume

based algorithms and spatial data

structures such as BVH[2-4] and space

subdivision.

Feature-based algorithms intend to

work directly with the primitives of the

objects. Image space based algorithm is

computed by image-based occlusion

queries that usually implement on the

graphics hardware (GPU). Volume

based algorithms seem to work just like

an image space based algorithm.

However, for simplex based algorithm, it

uses only the vertex of corresponding

object information in order to construct a

sequence of convex hulls [1]. One of the

most popular simplex-based algorithms

is GJK (Gilbert-Johnson-Keerthi) that

becomes one of the most effective

methods for determining intersection

between two polyhedral [5] . In 1994,

[6] presented exact collision detection to

be used in large-scaled environments.

Algorithm presented by [7, 8] used two

types of Axis-Aligned Bounding-Boxes

(AABB) which is fixed size boxes and

dynamically-resized bounding boxes

(dynamic boxes). They used Voronoi

diagram to find a closest feature pairs.

Here, they characterized the

environments by the objects in motion

and the complexity of the models.

Regular virtual environment may require

the simulation to give user satisfaction of

being able to navigate through the virtual

environment but that does not apply to

the large-scaled environment such as

urban simulation that has thousands of

objects in virtual world. Hence,

performing accurate collision detection

may consume long time just to check

possible intersection area within objects

in urban simulation. Thus leaving the

 398

only choice is to make sure that the

collision detection technique work

effectively.

There are another two types of

collision detection method that widely

been used which are BVH and space

subdivision. Space subdivision intends

to divide the spaces into small parts

called cells but it not widely used for

accurate collision detection. Example of

space subdivision research can be found

here [9, 10]. Bounding volume

hierarchies provides more efficient

technique using bounding-volumes that

provides smaller and tighter hierarchies

comparing to space subdivision [11-15].

Figure 1Examples of common BVs as

described in [16].

3 BOUNDING-VOLUME

HIERARCHIES

Bounding-Volume Hierarchies (BVH) is

the most common use hierarchical

representation in virtual environment

world. Compared to the space

subdivision technique that divide the

space, BVH is use to split the 3D object

into several parts depending on their

types of tree. BVH has also widely used

in culling system, collision detection

system and geometry refined system. It

also can be built using various type of

Bounding-Volume (BV) where the

complexity of BV depends on what the

application is targeted. Figure 1 shows a

Bounding-Volume type.

 In general, BVH consists of root,

nodes and branches that could be

represented as a tree structure. The

number of nodes is usually depending on

the type of tree such as binary tree, quad

tree, and oct-tree. For binary tree, the

root of the tree is divided into two parts

which is right node and left node. The

last part of the tree is called leaf node.

Figure 2The left hand side image shows

a BVH with Sphere BV while on the

right hand side image, shows unbalanced

hierarchical form using binary type

hierarchy.

The BVH works by first enclosed

the object with one large BV. Then, by

using splitting algorithm to properly

divide the object according to the type of

the tree (for example, binary tree), the

root has two more nodes that each node

has another BV that enclosed each node.

Then the splitting continues until

stopping criteria is met. The stopping

criteria must be set up in order to make

the tree construction stopped the

splitting process and avoiding infinite

looping. Common stopping criteria set

up by researcher are stopping when the

node only has very minimum triangle or

single triangle, under targeted time, or

when the tree cannot be evenly divided

into two parts. All these factors become

the main reason why the BVH

construction is important for the

simulation. Bad construction could

potentially get the simulation in the

infinite loop of binary search. The

construction process is usually done in

pre-processing time except for

deformable bodies simulation where

BVH is need to be rebuilt after the object

 399

has changes in their shape due to force

or impact.Example of bounding-volume

hierarchy is shown in Figure 2.

The unique ability for BVH to

detect potential collision is by searching

non-colliding pairs from the hierarchy

tree. Given an example of two objects,

each has their own BVH tree, the

collision will not be detected if their root

is not intersected and thus we eliminate

the search for the tree. This process

called broad phase collision detection

where the first time of contact need to be

detects first. However, the narrow phase

collision detection will be carried out

once the root of each BVH tree has come

into contact and the search for child

nodes will be running. It recursively

checks with their child nodes until it

found the precise contact between

objects.

3.1 Bounding-Volume

Bounding-Volume (BV) is an important

part of BVH construction. Numerous BV

have been developed in the past in order

to minimize the computational cost of

performing collision detection. Instead

of using primitive-primitive checking

between intersected 3D objects, BV

helps to speed up the process by

enclosing bunch of triangles into single

BV before proceed with collision

checking. This is to reduce the

possibility of eliminating set of triangles

that does not intersect.

At the present time, there are

several famous BVs such as spheres

[17], Axis Aligned Bounding Box

(AABB) [18-20], Oriented Bounding

Box (OBB) [11, 20, 21], Discrete

Oriented Polytope (k-DOP) [22],

Oriented Convex Polyhedra [16], and

hybrid combination BV [1]. Most large

scale 3D simulations used bounding box

because of the simplicity, require less

storage, fast response of collision, and

easy to implement [23]. Figure 2

illustrates most commonly used

bounding volume.

Figure 3An example on how the SOMS

rule split the object triangle into two

parts using the spatial midpoint between

midpoints of two triangles which will

become their separating plane.

4 SPATIAL OBJECT MEDIAN

ALGORITHM

Initially, the construction of BVH starts

by constructing the root of the BVH

which is a big BV. In this experiment,

we have chosen Axis-Aligned

Bounding-Box (AABB) as it produces

fast and nearly accurate collision

detection. Various of researchers has

already chosen AABB for their

researches process due to its design for

the collision process.

 Once we have constructed the BV,

the process of BVH creation starts by

finding the midpoint of the

corresponding AABB by using the

longest axes to split. Cartesian

coordinates consists of variable x,y, and

z for 3D object. The first step for

midpoint calculation is using all the

vertex point for corresponding AABB to

find the longest extend for the distance

between two points. By finding the

longest distance between two points, we

Mid-

Point

Object

Separating Plane of

Spatial Object

 400

have determined the respective axis for

us to split.

 The second step for midpoint

calculation is proceed by finding the

midpoint for each triangle for the object.

This is true for all BVH construction as

hierarchical representation required the

object BV to be divided into several

parts using midpoin of the triangle. Each

of the midpoint will be stored into

temporary variable that is declared as an

array or database.

 The differences between our

algoritm with the common spatial

median splitting algorithm is that we

have used the midpoint itself to calculate

new splitting axes.From Figure 3, it

shows that new separating axis plane

located between those two triangles

midpoints. Thus, it could properly assign

left and right nodes and store the

corresponding triangle until it could

have one BV one triangle. However for

SOMS, it creates temporary spatial

median of object median thus creating

new median point.

Balance BVH tree is more efficient

and fast when performing collision

detection compared to unbalance BVH

tree. Instead of faster construction using

SOMS technique compared to Spatial

Median, balance BVH tree helps

reducing the potential of performing

primitive-primitive testing on the earlier

phase of detection. For example, given a

node A with 40 triangles (using Spatial

Median splitting rules and stop at level

7) and a node B with 20 triangles (using

SOMS rules and stop at level 8). For

each triangle of node A, it checks 40

times with the other object triangle. If

the other object has 40 triangles too, it

means that 40 x 40 tests must be done.

However if we increase the level of

BVH tree make it more balance just like

node B with 20 triangles. It only needs

to check 20 x 20 times for collision

given each object while the construction

time is similar. Although it is one level

high compared to Spatial Median

splitting rules technique, SOMS needs to

perform only one test to move into the

next BVH tree level for collision

checking.

5 TREE CONSTRUCTION TIME

TEST FOR FIXED BALANCED

LEVEL OF SPATIAL MEDIAN

Figure 4 shows that SOMS

technique is faster than Spatial Median

technique in term of construction time.

SOMS is able to construct balanced

BVH at fixed level 7 while Spatial

Median become unbalanced when it

reaches level 7. By analyzing the Figure

4, we should notice that the BVH tree

has been constructed multiple times

(1000 times) and the average of these

values is calculated. Hence, if the object

consists hundreds of thousands polygon,

we can concluded that the construction

time for real application is dropped when

using SOMS technique compare to

Spatial Median technique. Apart from

that, the Figure 4 explained the number

of leaf nodes for both techniques are not

in the same BV size.

Figure 3Average times to construct

1000 times BVH for 3DS Urban

Simulation using Spatial Median and

SOMS method. The Level of BVH is

330

305

T
im

e
 T

o
 C

o
n

st
ru

ct

(m
il

li
se

co
n

d
s)

Urban Simulation

Urban Spatial

Median

Urban SOMS

 401

fixed at level 6 (Spatial Median

Balanced BVH).

6 TREE CONSTRUCTION TIME

TEST FOR FIXED BALANCED

LEVEL OF SOMS

Figure 4Average times to construct

1000 times BVH for 3DS Urban

Simulation using Spatial Median and

SOMS method. The Level of BVH is

fixed at level 7 (SOMS Balanced BVH).

In this experiment, Spatial Median

technique generated less nodes

compared to SOMS technique. SOMS

BVH tree needs to produce balanced

BVH level tree thus level 7 BVH tree is

supposed to generate 2
7
 = 128 nodes.

Each node is supposed to fill with

triangles. However for Spatial Median

technique, BVH that is generated has

fewer nodes than the actual total nodes

(less than 128 nodes). Hence, this proof

that even though the results showed that

SOMS much faster than Spatial Median,

SOMS still be able to construct faster

BVH tree with 128 nodes compared to

Spatial Median technique.

In previous statement, we can see

how number of triangles for certain

objects is really important for SOMS

technique to press its advantage. From

the previous figure below calculation of

Total Time in Minute for BVH tree

construction, SOMS technique proved

that for 1000 times construction test, it

consumed 15 minutes and 57 seconds.

Meanwhile for Spatial Median

technique, the testing was running for 16

minutes and 50 seconds. The formula

that we introduced here is to calculate

the total time to construct 1000 times of

BVH tree. It is our measurement to find

BVH tree construction total time. From

the testing that we run, we concluded

that for any object that has hundreds of

thousands polygon, SOMS be able to

perform better than Spatial Median

technique.

Total Time in Minute
SOMS� =
���×���� �����

���� ��������� !� ×"�
 =

15 %&'()*+ ,'- 57 +*/0'-+

 Total Time in Minute

Spatial Median Splitting�

=
1010 × 1000)&%*+

1000 %&55&+*/0'-+ × 60

= 16 %&'()*+ ,'- 50 +*/0'-+

From the calculation, it showed

that SOMS technique produce a better

BVH tree by achieving relatively less

time compared to Spatial Median

technique for just 5000 triangles. As

most of the complex environments

consisting hundreds of thousands

polygon, the number of time taken to

construct BVH tree is going to increase.

Hence, the outcome of this testing is to

measure how efficient BVH tree

construction if the complex

environments consist a lot of triangles.

7CONCLUSIONS AND FUTURE

WORK

This technique intends to help reducing

time to construct BVH while creating

more balanced level or the tree reducing

the use of heuristic determination. Since

previous researchers used some heuristic

1010

957

T
im

e
 T

o
 C

o
n

st
ru

ct

(m
il

li
se

co
n

d
s)

Urban Simulation

Urban Spatial

Median

Urban SOMS

 402

to continue to split their tree, SOMS

intends to reduce time to use heuristic

for the node determination. This could

benefit the real time construction when

the real application of SOMS can be

applied in deformable models instead of

rigid bodies in future work

REFERENCES

[1] S. H. Kockara, T.; Iqbal, K.;

Bayrak, C.; Rowe, Richard;,

"Collision Detection - A Survey,"

presented at the IEEE International

Conference on Systems, Man and

Cybernetics, 2007. ISIC., 2007.

[2] H. A. Sulaiman and A. Bade,

"Continuous Collision Detection

for Virtual Environments: A

Walkthrough of Techniques "

electronic Journal of Computer

Science and Information

Technology, vol. 3, 2011.

[3] H. A. Sulaiman, A. Bade, and N.

M. Suaib, "Bounding-Volume

Hierarchies Technique for

Detecting Object Interference in

Urban Environment Simulation,"

in Second International

Conference on Environmental and

Computer Science, 2009. ICECS

'09, 2009, pp. 436-440.

[4] N. M. Suaib, A. Bade, D.

Mohamad, and H. A. Sulaiman,

"On Faster Bounding Volume

Hierarchy Construction for Avatar

Collision Detection," in

International Conference on

Computer Technology and

Development, 2009. ICCTD '09,

2009, pp. 430-434.

[5] J.-W. Chang, W. Wang, and M.-S.

Kim, "Efficient collision detection

using a dual OBB-sphere bounding

volume hierarchy," Computer-

Aided Design, vol. 42, pp. 50-57,

2010.

[6] J. D. Cohen, M. C. Lin, D.

Manocha, and M. Ponamgi, "I-

COLLIDE: an interactive and

exact collision detection system for

large-scale environments,"

presented at the Proceedings of the

1995 symposium on Interactive 3D

graphics, Monterey, California,

United States, 1995.

[7] Y. XianYi and C. Guo, "Human-

Computer Interaction Design in

Product Design," in Education

Technology and Computer Science,

2009. ETCS '09. First

International Workshop on, 2009,

pp. 437-439.

[8] S. Redon, A. Kheddar, and S.

Coquillart, "Fast Continuous

Collision Detection between Rigid

Bodies," Computer Graphics

Forum, vol. 21, pp. 279-287, 2002.

[9] A. Perez, C. E. D'Attellis, M.

Rapacioli, G. A. Hirchoren, and V.

Flores, "Analyzing blood cell

concentration as a stochastic

process," Engineering in Medicine

and Biology Magazine, IEEE, vol.

20, pp. 170-175, 2001.

[10] J. Bittner, P. Wonka, and M.

Wimmer, "Visibility preprocessing

for urban scenes using line space

subdivision," in Pacific Graphics

2001 (Ninth Pacific Conference on

Computer Graphics and

Applications, 2001, pp. 276-284.

[11] J.-W. Chang, W. Wang, and M.-S.

Kim, "Efficient collision detection

using a dual OBB-sphere bounding

volume hierarchy," Computer-

Aided Design, vol. In Press,

Corrected Proof, 2009.

[12] L. Aiping and Z. Qinglin,

"Correlations Among Cartilage

Erosion, IgA Level, Red Blood

 403

Cell and Platelet Counts in 436

Rheumatoid Arthritis Patients with

Path Analysis," in Bioinformatics

and Biomedical Engineering ,

2009. ICBBE 2009. 3rd

International Conference on, 2009,

pp. 1-3.

[13] D. O. Tuft, "A System For

Collision Detection Between

Deformable Models Built On Axis

Aligned Bounding Boxes And Gpu

Based Culling," Master of Science,

Department of Computer Science,

Brigham Young University,

Brigham, 2007.

[14] A. Nguyen, "IMPLICIT

BOUNDING VOLUMES AND

BOUNDING VOLUME

HIERARCHIES," Doctor of

Philosophy, Stanford University,

2006.

[15] A. Sanna and M. Milani, "CDFast:

an Algorithm Combining Different

Bounding Volume Strategies for

Real Time Collision Detection," in

SCI, 2004, pp. 144-149.

[16] A. Bade, N. Suaib, M. Z. A, and T.

S. T. M, "Oriented convex

polyhedra for collision detection in

3D computer animation," presented

at the Proceedings of the 4th

international conference on

Computer graphics and interactive

techniques in Australasia and

Southeast Asia, Kuala Lumpur,

Malaysia, 2006.

[17] L. Liu, Z.-q. Wang, and S.-h. Xia,

"A Volumetric Bounding Volume

Hierarchy for Collision Detection,"

in 10th IEEE International

Conference on Computer-Aided

Design and Computer Graphics,

2007 2007, pp. 485-488.

[18] X. Zhang and Y. J. Kim,

"Interactive Collision Detection for

Deformable Models Using

Streaming AABBs," IEEE

Transactions on Visualization and

Computer Graphics, vol. 13, pp.

318-329, 2007.

[19] R. e. Weller, J. Klein, and G.

Zachmann, "A Model for the

Expected Running Time of

Collision Detection using AABB

Trees," in Eurographics

Symposium on Virtual

Environments (EGVE), Lisbon,

Portugal, 2006.

[20] C. Tu and L. Yu, "Research on

Collision Detection Algorithm

Based on AABB-OBB Bounding

Volume," in First International

Workshop on Education

Technology and Computer Science,

2009. ETCS '09. , 2009, pp. 331-

333.

[21] S. Gottschalk, M. C. Lin, and D.

Manocha, "OBBTree: a

hierarchical structure for rapid

interference detection," presented

at the Proceedings of the 23rd

annual conference on Computer

graphics and interactive

techniques, 1996.

[22] J. T. Klosowski, M. Held, J. S. B.

Mitchell, H. Sowizral, and K.

Zikan, "Efficient Collision

Detection Using Bounding Volume

Hierarchies of k-DOPs," IEEE

Transactions on Visualization and

Computer Graphics, vol. 4, pp. 21-

36, 1998.

[23] M. C. Lin and D. Manocha,

"Collision and Proximity Queries,"

in In Handbook of Discrete and

Computational Geometry, 2nd Ed.

vol. 35, Boca Raton, FL: CRC

Press LLC, 2004, pp. 787-807.

