INTELLIGENT LINE FOLLOWER ROBOT USING LDR SENSOR

MOHD HAFIZ BIN ABDUL MANAN

7 MAY 2008
“I/ we have approve that I’ve read the Final Year Project report with my opinion this report is fulfill the scope and the quality to be honored with the Bachelor of Electrical Engineering (Control, Instrumentation and Automation).

Signature : ...
Supervisors Name : MADAM AINAIN NUR BINTI HANAFI
Date : ...
INTELLIGENT LINE FOLLOWING ROBOT USING LDR SENSOR

MOHD HAFIZ BIN ABDUL MANAN

This Report Is Submitted In Partial Fulfillment of Requirements for the Bachelor Degree of Electrical Engineering (Control, Instrumentation and Automation)

Fakulti Kejuruteraan Elektrik
Universiti Teknikal Malaysia Melaka

MAY 2008
“I hereby declare that the report is the result of my own, as clearly stated in the sources of references and sources is explained and stated.”

Signature : ..
Name : MOHD HAFIZ BIN ABDUL MANAN
Date : 7 MAY 2008...............................
I dedicate this to both of my beloved parents, Abdul Manan bin Mohd Yusoff and Norani binti Abdul Hamid, my family, supervisor Madam Ainain Nur Bt Hanafi, friends and all electrical engineering community that determines to make the future of engineering lies in our hands.
ACKNOWLEDGEMENT

Special thanks to my supervisor, Madam Ainain Nur Bt. Hanafi for his support, idea, knowledge and sharing his experience to fulfill the objective of this final year project. With her support I gain knowledge from this project. I have learned a lot of project management skill which include the time and cost effective to realize the project.

Also thanks to my friend for spending their time teaching me about the PIC microcontroller connection, which seems to be very difficult for me to understand before. Million thanks to all of my friends that giving me so much supports to obtain the outcomes of this project.

Lastly, thank you to all of my family that has spending many time and money to give a never-ending support. Without them my life would be nothing.
ABSTRACT

This project is about design and implementation mobile robot kit that purpose to education. This mobile robot is capable to differentiate color lines. Microcontroller is use to control all the robot movement depend on the programming. The concept is the LDR sensors differentiate color lines based on color lines resistance. Two LDR sensors are use as an input that send signal to microcontroller to be processed. The compilation of output is showed by an application to a mobile robot which is moves due to the compilation of signal send by LDR sensors. Signal that come from PIC will control the wheel spin with the help of H-bridge and motor. Finally, this project has completed after a string of hardwork and energy done. The objectives achieved and robot capable to differentiate color lines and moved according to program. As for conclusion, Light Dependant Resistor (LDR) can be used to differentiate different color lines with different sensitivity levels.
ABSTRAK

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
TITLE	i	
PAGE OF ADMISSION	ii	
SUPERVISOR CONFIRMATION	iii	
DEDICATION	iv	
ACKNOWLEDGEMENT	v	
ABSTRACT	vi	
ABSTRAK	vii	
TABLE OF CONTENT	iiix	
LIST OF TABLES	xi	
LIST OF FIGURES	xii	
LIST OF ABBREVIATIONS	xiv	

1 | INTRODUCTION | 1
1.1 | Introduction of the Project | 1
1.2 | Objective | 1
1.3 | Scope of Work | 2
1.4 | Problem Statement | 2

2 | LITERATURE REVIEW | 4
3 THEORITICAL BACKGROUND

3.1 Microcontroller
 3.1.1 PIC16F877

3.2 Light Dependant Resistance
 3.2.1 LDR Manufacture
 3.2.2 LDR Characteristics
 3.2.3 LDR Applications
 3.2.4 LDR Resistivity
 3.2.5 LDR Resistance
 3.2.6 LDR Light Intensity

3.3 Direct Current (DC) Motor
 3.3.1 Transmission System
 3.3.2 DC Motor Control

3.4 H-Bridge
 3.4.1 L293B Integrated Circuit (IC)

4 PROJECT METHODOLOGY

4.1 Line Follower Robot Design
 4.1.1 Power
 4.1.2 Sensors
 4.1.3 Control Logic
 4.1.4 Motor Driver Circuit
 4.1.5 Chassis
4.2 Robot methodology 38

4.3 LDR circuit methodology 38

4.4 PIC circuit methodology 39

4.5 LDR sensor circuit 39

4.6 DC motor methodology 40

4.7 Troubleshoot methodology 40

4.8 Project Gantt chart 41

5 PROJECT DEVELOPMENT 42

5.1 Development of mobile robot 42
- **5.1.2 Robot operation** 46

5.2 Robot construction 46
- **5.2.1** PIC16F877 circuit 46
- **5.2.2** Motor driver circuit 49
- **5.2.3** LDR sensor circuit 51

5.3 Software development 52
- **5.3.1** System beginning 52
- **5.3.2** Interface system 52
- **5.3.3** Starting program 52

5.4 Expenditure cost 56

5.5 Experiments 57
- **5.5.1** Testing LDR sensor circuit 57
- **5.5.2** Testing H-Bridge circuit 58
- **5.5.3** Testing PIC circuit 61

6 RESULT AND ANALYSIS 64

6.1 Hardware 64
6.1.1 Sensors signals to PIC
6.1.2 PIC receives signal from sensors
6.1.3 PIC signal to motor driver circuit
6.1.4 Robot movement
6.1.5 Software
6.1.6 Tracks for robot

7 DISCUSSION, SUGGESTION AND ANALYSIS
7.1 Discussion
7.2 Suggestion
7.3 Conclusion

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flowchart for simple line follower robot</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Differences between microcontroller and microprocessor</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>PIC16F877 Microcontroller Key Features</td>
<td>11</td>
</tr>
<tr>
<td>3.3</td>
<td>PIC16F877A specification</td>
<td>15</td>
</tr>
<tr>
<td>5.1</td>
<td>Expenditure cost</td>
<td>56</td>
</tr>
<tr>
<td>5.2</td>
<td>Output voltage for different colors</td>
<td>58</td>
</tr>
<tr>
<td>5.3</td>
<td>Motor rotation observation</td>
<td>60</td>
</tr>
<tr>
<td>5.4</td>
<td>Motor direction</td>
<td>61</td>
</tr>
<tr>
<td>5.5</td>
<td>Vo for PIC Vdd and Vss pins</td>
<td>63</td>
</tr>
<tr>
<td>6.1</td>
<td>Robot movement</td>
<td>65</td>
</tr>
<tr>
<td>6.2</td>
<td>Robot movement</td>
<td>66</td>
</tr>
<tr>
<td>6.3</td>
<td>Motor movement in simulation circuit</td>
<td>70</td>
</tr>
<tr>
<td>6.4</td>
<td>Robot movement</td>
<td>75</td>
</tr>
<tr>
<td>6.5</td>
<td>Robot movement in different track</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flowchart for simple line follower robot</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>PIC16F877 Microcontroller</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>PIC16F877 Peripheral Figures</td>
<td>14</td>
</tr>
<tr>
<td>3.3</td>
<td>PIC16F877 Pinout</td>
<td>16</td>
</tr>
<tr>
<td>3.4</td>
<td>Normal collector current vs. object distance graph</td>
<td>18</td>
</tr>
<tr>
<td>3.5</td>
<td>Wavelength vs. relay intensity graph</td>
<td>19</td>
</tr>
<tr>
<td>3.6</td>
<td>Light Dependent Resistor (LDR)</td>
<td>19</td>
</tr>
<tr>
<td>3.7</td>
<td>Photoresistor symbol</td>
<td>20</td>
</tr>
<tr>
<td>3.8</td>
<td>LDR diagram</td>
<td>21</td>
</tr>
<tr>
<td>3.9</td>
<td>Resistance vs. Lux graph</td>
<td>22</td>
</tr>
<tr>
<td>3.10</td>
<td>Photoresistor Voltage Divider Circuits</td>
<td>26</td>
</tr>
<tr>
<td>3.11</td>
<td>Low voltage DC motor</td>
<td>28</td>
</tr>
<tr>
<td>3.12</td>
<td>Structure of DC Motor</td>
<td>29</td>
</tr>
<tr>
<td>3.13</td>
<td>Two basic states of a H-bridge</td>
<td>30</td>
</tr>
<tr>
<td>3.14</td>
<td>Two basic states of a H-bridge</td>
<td>30</td>
</tr>
<tr>
<td>3.15</td>
<td>L293B Integrated Circuit (IC)</td>
<td>31</td>
</tr>
<tr>
<td>3.16</td>
<td>L293B Pinout</td>
<td>32</td>
</tr>
<tr>
<td>3.17</td>
<td>L293B Pinout</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Mobile robot system block diagram</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Project methodology flowchart</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Robot methodology flowchart</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>LDR sensor circuit methodology flowchart</td>
<td>38</td>
</tr>
<tr>
<td>4.5</td>
<td>PIC circuit methodology flowchart</td>
<td>39</td>
</tr>
</tbody>
</table>
4.6 Motor driver H-Bridge circuit methodology flowchart
4.7 DC motor methodology flowchart
4.8 Troubleshooting process methodology flowchart
4.9 Project Gantt chart
5.1 Mobile robot sketches
5.2 Mobile robot pictures
5.3 Mobile robot flowcharts
5.4 LED blinking simulation program
5.5 PIC circuit with RS232 interface
5.6 PIC microcontroller circuit
5.7 L293B H-Bridge schematic diagram circuit
5.8 Motor driver circuit simulation
5.9 Motor driver circuit
5.10 LDR sensor circuit
5.11 LDR sensor schematic diagram circuit
5.12 PIC interface with PC
5.13 CCS PIC C Compiler software
5.14 Successfully compiled program
5.15 Code downloader
5.16 H-Bridge motor driver circuit
5.17 PIC circuit
6.1 Robot forward movement
6.2 Robot reverse movement
6.3 Robot turn right movement
6.4 Robot turn left movement
6.5 Motor forward reverse circuit
6.6 Robot forward movements
6.7 Robot reverse movement
6.8 Robot turn right direction
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>Robot turn left direction</td>
<td>74</td>
</tr>
<tr>
<td>6.10</td>
<td>Tracks for project</td>
<td>79</td>
</tr>
<tr>
<td>6.11</td>
<td>Track 1</td>
<td>81</td>
</tr>
<tr>
<td>6.12</td>
<td>Track 2</td>
<td>83</td>
</tr>
<tr>
<td>6.13</td>
<td>Track 3</td>
<td>84</td>
</tr>
<tr>
<td>6.15</td>
<td>Track 4</td>
<td>86</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM</td>
<td>Projek Sarjana Muda</td>
</tr>
<tr>
<td>PLC</td>
<td>Light Dependant Resistor</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>AC</td>
<td>Alternate Current</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read-Only Memory</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>PIC</td>
<td>Programmable Integrated Circuit</td>
</tr>
<tr>
<td>LDR</td>
<td>Light Dependant Resistor</td>
</tr>
</tbody>
</table>
LIST OF APPENDIXES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PIC16F877 Specification</td>
<td>93</td>
</tr>
<tr>
<td>B</td>
<td>PIC16F877 Pinout Descriptions</td>
<td>95</td>
</tr>
<tr>
<td>C</td>
<td>LDR Technical Specification</td>
<td>98</td>
</tr>
<tr>
<td>D</td>
<td>Material Resistivity and Temperature Effect</td>
<td>99</td>
</tr>
<tr>
<td>E</td>
<td>L293 Technical Specification</td>
<td>100</td>
</tr>
</tbody>
</table>
INTELLIGENT LINE FOLLOWER ROBOT USING LDR SENSOR

MOHD HAFIZ BIN ABDUL MANAN

7 MAY 2008
CHAPTER I

INTRODUCTION

1.1 Introduction

Building a simple line following robot is a good entry point into the world of autonomous robotics. When developing a mobile robot, we can apply the principles of robotics. This project aim is to build a robot, controlled by a PIC microcontroller that able to perform the required tasks and instruction. The purpose of this project is to implement Light Dependant Resistor (LDR) on a mobile robot to differentiate color lines.

Line following robot is a combination of hardware and software parts. Hardware parts are sensor circuit, microcontroller circuit, voltage regulator circuit, motor driver circuit, chassis and wheels. Software parts are simulation software and programming software using C language.

Combination of hardware and software parts will produce a mobile robot that able to implement the tasks and programs structured.
1.2 Project Objectives

To achieve the requirements, I lined up several objectives of this project:

1. To design and built mobile robot using LDR sensor and analyze the outcome of the project.
2. By developing sensors, hardware and software, the project enables us to get a deeper understanding of what is required in the design of a mobile robot.
3. Expose students on how Programmable Integrated Controller (PIC) functioning as a logic control in robot design.
1.3 Project Scope

In general this project scopes are:

- Design circuit for:
 - LDR sensor
 - PIC microcontroller
 - Motor Driver
- Write program for microcontroller system.
- Circuit simulation using Proteus.
- Combine hardware and software part to combine a mobile robot.
- Present project result and analysis.

If there any problem or error in the robot operation, researches and experiments will be do again and robot design will be modified to achieve the expected results.
1.4 Problem Statement

Nowadays, line follower mobile robots used for education purpose are to be in the market. The implementation of this mobile robot can solved student’s problems in order to learn and studying how to create and design mobile robot. Students also get expose on how to connect Programmable Integrated Controller (PIC) to electronic components such as sensors, motor circuit, and so on. The application of control system also can be learn with this mobile robot project. This project also embraces relevantness of Light Dependant Sensor (LDR) usage in industrial applications nowadays.
CHAPTER II

LITERATURE REVIEW

Title : Simple Line Follower Robot
Author: Murat Dilaver Vural
: Atilim University, Department of Electrical and Electronics Engineering.

This project serves as a short term summer practice project for undergraduate engineering students in Atilim University. The purposes of this project are to allow the students to design and implement a model or a complete electromechanical system involving both mechanical and electrical hardware as well as software component that has a great educational value. This project objective is to develop and implement a robot which can follow a curve drawn on a surface with contrasting color, such as a black curve on a white surface.

The hardware design for this project is divided into several units that first can be tested or implemented separately and then combined together. These units are components needed in any basic design and implementation:

- Processing unit
- Mobility unit
- Sensory unit
- RS232 communication unit