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Abstract—Large–scale neural correlates of auditory selective
attention reflected in the electroencephalogram (EEG) have been
identified by using the complex wavelet–phase stability measure
(WPS). In this paper, we study the feasibility of using the WPS in
extracting the correlates of selective attention by comparing its
performance to the widely used linear interdependency measures,
i.e., the wavelet coherence and the correlation coefficient. The
outcome reveals that the phase measure outperforms the others
in discriminating the attended and unattended single sweep
auditory late responses (ALRs). Particularly, the number of
response sweeps that are needed to perform the differentiation is
largely reduced by using the proposed measure. It is concluded
that a faster (in terms of using fewer sweeps) and more robust
objective quantification of selective attention can be achieved by
using the phase stability measure.

I. INTRODUCTION

Synchronization of EEG provides crucial information to

understand the higher cognitive and neuronal processes [1],

[2], [3]. In [4] it is argued that EEG phase synchronization

reflects the exact timing of the communication between distant

but functionally connected neural populations, the exchange of

information between global and local neuronal networks, and

the sequential temporal activity of neural processes in response

to external stimuli (refer [4] for a detailed review).

Event–related potentials (ERPs) are widely used in the

studies of neuronal synchronization associated with several

higher cognitive processes. However, the amplitude informa-

tion of single sweep event–related potentials turned out to be

fragile in some cases [5], [6]. Large amplitude fluctuations

can easily be introduced by slight accidental changes in the

measurement setup over time. Since the signals exhibit a high

degree of variance from one sweep to another, even robust

amplitude independent synchronization measures such as the

time–scale entropy [7] can hardly be applied to assess their

synchronization stability.

In order to address this issue, we have proposed a novel

approach to identify the neural correlates of auditory se-

lective attention which employs wavelet–based measure that

highlights the phase information of the EEG exclusively. In

particular, the wavelet–phase stability (WPS) of single sweeps

auditory late response (ALR) sequences is confirmed to be

linked to attention [8].

In signal processing, Oppenheim and Lim emphasized the

importance of the phase in signals by using the Fourier

representation [9], [10]. They applied numerical experiments

to illustrate the similarity between a signal and its only phase–

reserved reconstruction. More recently, the significance of

phases in the continuous wavelet representation of analytic

signals has also been shown [11]. Besides that, a statistical

interpretation of the usefulness of phase information in signal

and image reconstructions has been given in [12]. The authors

demonstrated that a random distortion of the phases can

dramatically distort the reconstructed signal, while a random

distortion of the magnitudes will not. Taken together, previous

studies strongly support that the phase of a signal contains

much more important information compared to the amplitude.

Generally, the extraction of the EEG phase can be done via

two closely related approaches: the Hilbert transform (or an-

alytic signal approach) and the wavelet transform. As pointed

out by most of the studies, the performance of both methods

is comparable [13], [14], [15], [16]. However, the Hilbert

phase and Hilbert amplitude have direct physical meaning only

for narrow band signals [17], [18]. Meanwhile, the wavelet

transform can be thought as equivalent to band–pass filtering

of the signal, which makes the pre–filtering unnecessary.

The main goal of this paper was to examine the feasibility

of using the WPS in extracting large–scale neural correlates

of selective auditory attention. In order to accomplish the task,

a performance study of the WPS with the other two popular

methods, i.e., wavelet coherence and correlation coefficient

by means of the moving mean approach was performed. The

main interest of this study was to deepen our understanding

of the proposed wavelet–phase stability of ALR sequences

and to show its potential use as a synchronization measure

in analyzing neural correlates of auditory selective attention.
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II. METHODS

A. Subjects and materials

A total of 10 student volunteers (with mean age of 26.7 and

standard deviation of 2.5, 4 females) from Saarland Univer-

sity entered the study. All subjects were given the informed

consent prior to their participation and the experiments were

conducted in accordance with the Declaration of Helsinki. The

maximum entropy auditory paradigm was used (more details

can be found in [19]). For each experiment, subjects performed

the attention task (i.e., detecting the target tones in a series of

three different tones) for a length of 10 minutes followed by

another 10 minutes of relaxing (with no attention).

ALRs were acquired by using a commercially available

bioamplifier (g.tec USBamp, Guger Technologies Austria)

with a sampling frequency of 512 Hz. Single sweeps (i.e.,

individual responses to tones) were recorded from the elec-

trodes placed at the left and right mastoid (EEG channels),

the vertex (Reference), and the upper forehead (Ground).

Electrodes impedances were strictly maintained below 5kΩ in

all measurements. Data obtained was bandpass filtered with a

FIR filter with cut–off frequencies of 1–30 Hz. An additional

artifact filter was used to remove responses that exceeded

50µV.

B. Moving Mean Wavelet–Phase Stability

We employed the time–scale coherence measures based on

the complex wavelet transform. The quality and stability of the

response over the stimulus sequences are evaluated in terms

of the time-resolved phase information. According to [20],

the phase stability of a sequence F = {fm ∈ L2(R) : m =
1, . . . ,M} of M sweeps Γs,τ is defined by:

Γs,τ (F) =
1

M
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In this study, we used the 4th–derivative of the complex

Gaussian function as wavelet. In general, Eq. (1) yields a value

in the range of 0 and 1. We have a perfect phase stability for

a particular s and τ for Γs,τ = 1 and a decreasing stability

for smaller values due to phase jittering.

We defined a moving mean wavelet–phase stability as a

function of m sweeps as in the following equation:
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C. Moving Mean Wavelet Coherence

Wavelet coherence was first introduced by [21] and has

been commonly used in evaluating synchronization in EEG

[22], [23], [24]. Furthermore, it has recently been used for a

reliable detection of auditory habituation [25]. It is noted that

the wavelet coherence measure that we applied here is adopted

from [25], which is similar to [21].

For x, y ∈ L2(R), the wavelet coherence of two signals x

and y, υδ,ψ(·, ·) with a fixed smoothing parameter δ ∈ R> 0
and the wavelet ψ is defined as the cross–wavelet spectrum

of the two signals normalized by their corresponding auto–

spectra:

(γδ,ψx, y)(s, τ) =

∣

∣(ρδ,ψx, y)(s, τ)
∣

∣

√

(ρδ,ψx, x)(s, τ)(ρδ,ψy, y)(s, τ)
. (3)

Due to the Schwartz inequality, Equation (3) is constrained

to a value between 0 and 1.

Then, the inter–sweep wavelet coherence of a sequence F =
{fm ∈ L2(R) : m = 1, . . . ,M−1} of M−1 sweeps is defined

as:

υm(F , s, τ) = (γδ,ψ(s, τ)fm, fm+1), m = 1, ...,M − 1.
(4)

Finally, we defined the moving mean wavelet coherence in

a similar way to the moving mean wavelet–phase stability:

Υm(F , s, τ) =
1

m

m
∑

n=1

υn(F , s, τ), m = 1, ...,M − 1.

(5)

D. Moving Mean Correlation Coefficient

Correlation coefficient is often referred to more specifically

as the Pearson’s correlation coefficient, or Pearson Product–

moment correlation coefficient. It is a measure of the linear

relationship between the two signals and has been used in

the EEG synchronization investigations. For a sequence F =
{fm ∈ L2(R) : m = 1, . . . ,M} with M sweeps and Ferp is

the average of the sequence F , the moving mean correlation

coefficient of the sequence F and Ferp is defined in terms of

their covariance cov and standard deviations σ, as seen below:

rm(F) =
cov(fm,Ferp)

σfmσFerp
, m = 1, ...,M, (6)

where fm = 1
m

∑m
n=1 fn,m = 1, ...,M .

This gives a value of [−1, 1]. If there is no relationship

between the two signals then the correlation coefficient will

be 0; if there is a perfect positive match it will be 1. If there is

a perfect inverse relationship, then the correlation coefficient

will be -1. The significance level (i.e., p–value) is calculated

by transforming the correlation to create a t statistic having

n− 2 degrees of freedom, where n is the number of subjects.

III. RESULTS AND DISCUSSION

The scale parameter s of the complex wavelet analysis

was chosen as 40. Note that the scale can be associated

with a pseudo frequency of 6.4 Hz. Regarding the translation

parameter τ , we considered the interval of 70–120 ms where

the N1 wave appeared.

Figure 1 (a) shows the grand averaged of the normalized

moving mean wavelet–phase stability for the target tones from

the maximum entropy auditory attention experiments and its
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corresponding significant test results (i.e., one–way ANOVA).

It is noted that the horizonal dashed lines on the right of the

figure indicates the significant level p < 0.05. As one can ob-

serve, only as few as seven sweeps are needed to significantly

discriminate the attended and unattended conditions.

Regarding the evaluation which uses the moving mean

wavelet coherence, the smoothing parameter δ was set to 20

as in [25] since we study the same interval of interest. The

outcome is shown in Figure 1 (b). In general, the performance

of the wavelet coherence is not encouraging. Based on the

figure, although the wavelet coherence of the target tones

shows significance difference at certain sweeps, the difference

is fluctuating over the sweeps.

The result of using the correlation coefficient as synchro-

nization measure is illustrated in Figure 1 (c). The graph

shows the results for both attended and unattended sweeps

and the p–values are computed by using the t–test. At least 23

sweeps are required to differentiate significantly the attended

and unattended conditions for the target tones.
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Fig. 1. The grand averaged of the (a) normalized moving mean wavelet–phase
stability, (b) moving mean wavelet coherence, (c) moving mean correlation
coefficient and their corresponding significance test results for the target tones.
Note that the horizontal dashed line on the right side indicates the significant
level p < 0.05.

On the other hand, it is also interesting to observe the

time domain signals. Figure 2 (a) shows the normalized

wavelet–phase stability for the first seven sweeps and Figure

2 (b) depicts the averaged of the first seven ALRs. The

correlation coefficient of the averaged attended ALRs and

averaged unattended ALRs is calculated as 0.5750 and it

implies a significant association between these two signals (t–

test, p < 0.05).
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Fig. 2. (a) The grand averaged of the normalized wavelet–phase stability
for the first seven sweeps of the target stimuli. (b) The grand averaged of
the time–domain ERP for the first seven sweeps of the target stimuli. Note
that the correlation coefficient at the N1 wave is calculated as 0.5750 (t–test,
significant level p < 0.05).

Typically, a large number of ALR sweeps is used in iden-

tifying neural correlates of auditory selective attention due to

a poor signal–to–noise ratio. The number of sweeps that has

been used in those pioneer studies is typically more than 100,

some studies even analyzed more than 1000 sweeps (e.g., [26],

[27], [28], [29], [30], [31], [32]. This has led to a lengthy

EEG recording and processing time. Furthermore, subjects are

easily exhausted during the task performing.

A number of studies in the field of EEG synchronization use

the coherence measure. However, it is argued that coherence

cannot be regarded as a specific measure of synchronization

[33], [34], [35]. As we know, coherence does not separate

the effects of covariance of the amplitude waveforms and

of the phases of two oscillatory signals. Since the core of

the synchronization is the adjustment of phases and not of

amplitudes, it should be detected by a measure neglecting

amplitude variations.

It has been highlighted by the authors in [4] that the

EEG phase synchronization reflects the exact timing of com-

munication between distant but functionally related neural

populations, the exchange of the information between global

and local neuronal networks, and the sequential temporal

activity of neural processes in response to incoming sensory

stimuli. So, the phase of ongoing EEG oscillations (certain

frequencies) must undergo resetting (or realignment) due to the

exogenous (i.e., physical properties of the incoming auditory
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stimulations) as well as endogenous processes (i.e., during the

performance of the attentional task). Therefore, methods to

analyze the phase of the EEG are more desirable and proper

because phase values might contain crucial and meaningful

information related to cognitive processes.

IV. CONCLUSION

We have presented a performance study of using the WPS in

identifying neural correlates of auditory selective attention that

reflected in single sweeps ALRs. It is shown that the method

requires fewer response sweeps to perform the discrimination

of the attentional conditions (attended versus unattended) com-

pared to the widely–used wavelet coherence and correlation

coefficient methods. It is concluded that the WPS is adequate

to be used in an objective evaluation of large–scale neural

correlates of auditory selective attention as a synchronization

measure.
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