A COMPARISON OF TRANSITIONAL BEHAVIOUR OF BASIS COMPOSITON METHODS OF WAVELET TRANSFORM

MUHD HAFIZUDDIN BIN KHALID

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honours

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

April 2009
Universiti Teknikal Malaysia Melaka

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Borang Pengesahan Status Laporan

Projek Sarjana Muda II

Tajuk Projek: A COMPARISON OF TRANSITIONAL BEHAVIOUR OF BASIS COMPOSITION

Metodologi: WAVELET TRANSFORM

Sesi: 2008/2009

Pengajian:

Muhib Haszuddin bin Khalid

(HURUF BESAR)

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan () :

☐ SULIT (Mengandungi maklumat yang bersama kecurangan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

Disahkan oleh:

(Spanduk)

(Cop dan Tandatangan Penyelidik)

Alamat Tetap: No, Jalan Robena 2, TMN Robena,
Parit Raja, 86400 Batu Pahat,
Johor

Tarikh: 28 April 2009

© Universiti Teknikal Malaysia Melaka
“I hereby declare that this report is the result of my own work except for quotes as cited in the references.”

Signature : ...

Author : MUHD HAFIZUDDIN BIN KHALID

Date : 30 APRIL 2009
“I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honours.”

Signature : ………………………………………………………

Supervisors Name : NIK ZARIFIE BIN MOHD HASHIM

Date : 30 APRIL 2009
To my beloved family…
ACKNOWLEDGEMENT

First of all, I would like to convey my deepest appreciation and million thanks to Encik Nik Mohd Zarifie bin Hashim for his persistent assistance and effort in the completion of my Projek Sarjana Muda (PSM) report. As my supervisor, he provides me with unlimited access of knowledge as well as professional advice, encouragement and suggestion towards completing my report. His valuable guidance and contribution are very much appreciated. My sincere appreciation also extends to my helpful friends who helped to clear the doubts and obstacles that I confronted throughout my journey of completing this report. Thank you very much for all the memorable moments during my life in Universiti Teknikal Malaysia Melaka (UTeM). Last but not least, I would like to convey my deepest appreciation to every single member of my family for their never ending support and beliefs in me. The main reason for me being able to reach this stage of life all owes them. Thank you very much.
The purpose of this project is to study and investigate the suitability of applying certain basis composition in wavelet transform to an image. Thus a program will be created based on the basis composition design to transform and reverse the image and give the analysis result. The analysis would be an analysis on signal to noise rate (SNR) and other analysis to determine the basis suitability to certain type of images. This project mainly has been divided into two main parts, research on basis and software development. Major concentration will be focused on the research since this is the core part of this project. The program, which develop through the Linux platform, will be used C as the programming language. This program will transform the image and used it as the output including the analysis result. The image used is base on standard (SIDBA). It is also grayscale type with the size of 256 × 256 pixels. A different type of basis composition will be applied through the image and the resultant image and analysis then will be compared by transitional behavior.
ABSTRAK

Tujuan utama projek ini adalah untuk menjalankan kajian terhadap kesan penggunaan beberapa komposisi basis terhadap gambar. Sebuah program dibina untuk tujuan tersebut di mana ia adalah berdasarkan komposisi ‘basis’ yang dibuat dan program ini akan mengubah komposisi gambar dan memberi analisis terhadap gambar tersebut. Analisis gambar adalah analisis terhadap nisbah isyarat terhadap bunyi dan analisis lain untuk melihat kesesuaianannya terhadap gambar tersebut. Projek ini terbahagi kepada dua bahagian utama iaitu kajian terhadap komposisi ‘basis’ dan membina program. Tumpuan utama diberikan terhadap kajian terhadap komposisi ‘basis’ kerana ia adalah teras utama projek ini. Program yang dibina pada pelantar Linux ini menggunakan bahasa C sebagai bahasa pengaturcaraan. Ia akan mendapatkan gambar, seterusnya komposisi gambar ini akan diubah dan ia akan dikeluarkan kembali beserta analisis. Gambar yang digunakan adalah mengikut piawai (SIDBA) dan jenis ‘grayscale’ dan saiznya adalah 256 × 256 piksel. Perbandingan akan dibuat terhadap beberapa jenis komposisi ‘basis’ terhadap gambar.
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT TITLE</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>APPROVAL FORM</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>SUPERVISOR AUTHENTICATION</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>CONTENTS</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xviii</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

1.1 Introduction to Project 1
1.2 Objective of Project 2
1.3 Problem Statement 3
1.4 Scope of Project 3
1.5 Short Brief on Project Methodology 3
1.6 Outline of Report 4

LITERATURE REVIEW

2.1 Wavelet System 5
2.1.1 Wavelet Expansion 7
2.2 Concept of Basis 8
2.3 Concept of Orthogonal and Orthonormal 9
2.4 Wavelet Transform 10
2.4.1 Frequency Sampling 11
2.4.2 Orthogonal Wavelet 13
2.4.2.1 Multi resolution Analysis 13
2.4.2.2 Hierarchy shape smooth signal and multi resolution space

2.4.3 Orthogonal Wavelet Basis

2.4.4 Haar Wavelet Basis

2.4.5 Orthogonal Wavelet Expansion

2.4.6 Data Composition and Combination using Filter Coefficient

2.4.6.1 Data composition

2.4.6.2 Data combination

2.4.7 Orthonormal of Two Variable Function’s Structure Method

2.4.8 Two Variable Orthogonal Wavelet

2.5 Data Quantization

2.6 Shannon Theory

2.7 Bitmap Image

2.8 Brief Introduction to Image Compression And JPEG 2000
III METHODOLOGY 32

3.1 Project Flow Chart 32

3.2 Project Overview 34

3.3 Designing the Basis 36

 3.3.1 Multi Resolution Analysis (MRA) 36

 Method

 3.3.2 Direct Product (DP) Method 38

 3.3.3 Double Resolution Decomposition 40

 (MRA2) Method

 3.3.4 Quadruple Resolution Decomposition 42

 (MRA4) Method

IV RESULT AND DISCUSSIONS 43

4.1 The Program 44

 4.1.1 Basis Program 46

 4.1.2 Quantization Analysis 48

 4.1.3 Entropy Analysis 50

 4.1.4 Signal to Noise Rate (SNR) Analysis 50

4.2 Image Analysis and Comparison 51
LIST OF TABLE

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Effect of quantization</td>
<td>49</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Shifting and scaling of a signal</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Area below a signal</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Scaling function to a signal</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>n-resolution space</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Combination of two n-resolution data</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Vector space of V_n and V_{n-1}</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Pyramid Structure</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Approximation of V_n to $f(t)$</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>Haar Wavelet Function</td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>V_{n-1} and W_n vector space</td>
<td>25</td>
</tr>
<tr>
<td>2.11</td>
<td>Flow of data composition and combination</td>
<td>27</td>
</tr>
<tr>
<td>2.12</td>
<td>Shannon’s communication model</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of project</td>
<td>33</td>
</tr>
</tbody>
</table>
3.2 Overview of the research 35
3.3 Intermediate Basis Composition 35
3.4 MRA $2^1 \times 2^1$ 37
3.5 Step in expansion for MRA $2^1 \times 2^1$ 38
3.6 DP methods for $4^1 \times 4^1$ pixels arrangement 39
3.7 MRA2 $4^2 \times 4^2$ arrangements 41
3.8 MRA4 16×16 arrangements 42
4.1 Flow of program 44
4.2 Step of program development 45
4.3 Basic transformation program at horizontal direction 46
4.4 Output from basic MRA $2^1 \times 2^1$ programs 47
4.5 Example of quantization 48
4.6 Analysis program 51
4.7 Building.bmp image 53
4.8 Comparisons for MRA and DP for Building.bmp 54
4.9 Comparisons for MRA2 and MRA4 for Building.bmp 55
4.10 Cameraman.bmp image 56
4.11 Comparisons between MRA and DP for Cameraman.bmp 56
4.12 Comparisons between MRA2 and MRA4 for Cameraman.bmp 57
4.13 Chart comparisons for SNR vs. Quantization
for MRA and DP method

58

4.14 Chart comparisons for SNR vs. Quantization
for MRA2 and MRA4 method

59

4.15 Chart comparisons for SNR vs. Entropy
for Building.bmp

60

4.16 Chart comparisons for SNR vs. Entropy
for Cameraman.bmp

61
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SIDBA Image</td>
<td>64</td>
</tr>
<tr>
<td>B</td>
<td>The Program (MRA Method)</td>
<td>65</td>
</tr>
<tr>
<td>C</td>
<td>Data for Analysis</td>
<td>72</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

This chapter will discuss the overview of this project, the aims and specific objectives of the project. The end of this chapter will list the report outline.

1.1 Introduction to project

Wavy signals are usually represented by oscillating functions of time or space, for example sinusoids. Fourier analysis, which is a method of wave analysis which extremely valuable in mathematics, science and engineering, especially for periodic, time-variant or stationary phenomena, expands signals or functions in terms of sinusoids. However, it is not always suitable for transient phenomena, because the basis functions are not localized. In order to avoid this weak point, several methods for non-stationary signals have been proposed. The wavelet transformation is one of them. Wavelets are short waves, whose energy is concentrated in time domain give a tool for the analysis of transient, non stationary or time-varying phenomena. They still have an
oscillating-wave like characteristic but also have the suitability to simultaneous time-frequency analysis. While sinusoids in Fourier transformation have the oscillations with equal amplitude all over $-\infty \leq t \leq \infty$ which have infinite energy, while wavelets in wavelet transformation have finite energy which is concentrated around a time point [1]. From this property, wavelet transformation became a new tool to be applied and used in many fields, for example image processing.

This project will apply the concept of wavelet transform in designing of basis composition that will be applied to the standard image to compare for its suitability. Begin with the concept of transform and reverse which behave the concept of data sent from transmitter to receiver in information theory. Each basis design may have its own characteristic and this matter will be seen from the analysis as comparison to the entire basis designed was made.

1.2 Objective of Project

Through the research of this project, the main goal is the success in designing the basis composition and develops the program. To achieve this, there should be a few objectives to be considered. The main objectives of this project:

i. To study literature review of wavelet transforms.
ii. To study image processing and how an image can be transformed and reversed.
iii. To investigate the suitability of variety basis function.
iv. To design a program that give output which is the result image and some analysis result.
1.3 Problem Statement

Intermediate basis function has been known in characteristic between multi resolution analysis (MRA) method and direct product (DP) method. This purpose brings to a research in finding the characteristic between both the basic composition methods.

1.4 Scope of Project

This project is divided into two stages, which are:

Stage 1: Literature study

Project begins with the literature study on the concept of wavelet transform. Then further study made to the concept of basis which is the core part of this project.

Stage 2: Software development

A program will be designed using C program based on the basis composition design. Variety of basis composition will be designed and then will be compared through the output image.

1.5 Short Brief of Project Methodology

This project mainly divided into two parts which are research on the basis composition and program development. Research did include the literature study on wavelet transform and the concept of basis which is the main component of this project. The understanding through this part will lead through the designing of the program that
used to transform the image and give the analysis result as the output include the transformed image.

1.6 Outline of report

This report consists five chapters. In first chapter, it discuss about the objective and scope of this project as long as summary of works. While Chapter 2 will discuss more on theory and literature reviews that have been done. It well discusses about basis and brief discuss on wavelet transform. In Chapter 3, the discussion will be on the methodology of this project. This project known to be divided into two parts, which are research on basis composition and program development. The detail process for both part will totally well presented in this chapter. While Chapter 4 is the result part that will be discussed the result of basis composition applied to the image. While the last part is Chapter 5 that will conclude findings from this research and suggestion for future works.
This chapter reasons to review and to discuss some of the references makes from the journals, books and the useful website that related to this project.

2.1 Wavelet System

Wavelet systems used for the expansion of signals that are not unique. There are many different types of wavelet systems that can be used effectively. Wavelets have several general characteristics. A wavelet system is a set of building blocks to construct or represent a signal or function and wavelet expansion gives a time-frequency decomposition of a signal. It is analogous to the Fourier series expansion which represents a signal by a summation of complex sinusoid weighted by a set of coefficients [1]. Also we can say that most of the energy of a transient signal is well represented by a few expansion coefficients. The calculation of the coefficients from the signal can be done efficiently. All so-called first generation wavelet systems are generated from a
single basic wavelet function by the simple scaling and the translation. This two-dimensional parameterization achieved from function of \(\psi(x) \). In other words, a wavelet function in the wavelet system is defined by

\[
\psi_{j,k}(x) = 2^{-j/2} \psi(2^{-j} x - k), \quad j, k \in \mathbb{Z}
\]

(2.1.1)

with two parameters \(j \) and \(k \), \(\mathbb{Z} \) is the set of all integers and the factor is \(2^{-j/2} \) for keeping the norm invariant. This parameterizations, where the time or scale location is expressed by \(k \) and the scale by \(j \), turns out to be very convenient. Almost all useful wavelet systems also satisfy the multi-resolution conditions. This means that if the signals in a set can be represented by sum of \(\psi(x - k) \), then those in a larger set (including the original) can be represented by sums of \(\psi(2x - k) \). In other words, if the basic expansion signals are made half as wide and translated in steps half as wide, they will represent a larger class of signals exactly or given a better approximation of any signal. The higher-resolution coefficients can be calculated from the adjacent lower-resolution coefficients according to multi-resolution pyramid structure. This property allows a very efficient calculation of the expansion coefficients and it relates the wavelet transformation to digital filters in signal processing. As a result, wavelet analysis is very suitable for transient and non-stationary signals, though Fourier analysis is suitable for periodic and stationary signals whose statistical characteristics do not depend on the time.