OPTIMIZATION OF WATER TANK SUPERSTRUCTURES FOR FIRE FIGHTING VEHICLES

MOHD ZAID BIN SOKAYAIL@MISLAN

This report is submitted in accordance with requirement for the Bachelor of Mechanical Engineering (Design & Innovation)

Faculty of Mechanical Engineering
Universiti Teknikal Malaysia Melaka

MAY 2011
I admit that had read this thesis and in my opinion this thesis was satisfied from the aspect of scope and quality for the purpose to be awarded Bachelor of Mechanical Engineering (Design and Innovation)

Signature

Name of Supervisor I
En. Syahibudil Khwan Bin Abdul Kudus

Date
25/5/11
"I verify that this report is my own work except for the citation and quotation that the source has been clarified for each one of them"

Signature

Name of Author: Mohd Zaid Bin Sokayail@Mislain

Date: 03/5/2011
Specially
Thank to Allah S.W.T.
To my beloved family members and girlfriend for motivation
To En. Syahibudil Ikhwan Bin Abdul Kudus for the guidance
To my housemate for their support
To whoever provided help and contributions
ACKNOWLEDGEMENT

In this great opportunity, I would like to thank Allah for providing me strengths to finish up this project and finally it was completed. Here, I would like to acknowledge and appreciate all those people who helped and guided me till the completion of this project.

I would like to express my gratitude to my supervisor, Syahibudil Ikhwan Bin Abdul Kudus, who is willing to offer his support throughout my final year project. He has graciously contributed his time, patience, and guidance in helping me completing my project. Without him, I would never achieve what I have meant to complete. His constant encouragement and guidance had brought me to the final stage of my project. I would like to wish a thousand thank to Mr Rogers Sek a Design Engineer from CME Technologies Sdn. Bhd. His experience in this related topic has also given me a boost of confidence in conducting my whole project.

I also would like to forward my thanks to my parents especially my father, Mislal Bin Yahya, and my mother, Kuzaimah Binti Md Nor, who had been supporting and praying for my success. Not forget also to my brothers who always gave words that encourage my spirit so that I can keep going on for the success of this project.

Finally, I would like to thanks to all my friends who help and guide me discussed about my project. Without their moral support, I can’t finish this project. Hopefully, this report will be used as guidance and reference for the future studies.
ABSTRACT

Water tank superstructure is use to support fire fighting water tank and other payload integrates with it. It mounts on the vehicle main chassis, thus refinement need to be made in order to reduce the structural weight and manufacturing cost. Nowadays with the capabilities of advanced computer aided design and engineering tools, the process of structural design in the automotive industry has been significantly refined. The application of FEA such as structural modification and optimization is used to reduce component complexity, weight and subsequently cost. Because the level of model complexity can be high, the opportunity for error can also be high. For this reason, some form of model verification is needed before design decisions made in the FEA environment can be implemented in production with high confidence.

This thesis project involved static and dynamics analysis to determine key characteristics of a water tank cladding. The static characteristics include identifying location of high stress area and deflection area. The dynamic characteristics of truck chassis such as the natural frequency and mode shape were determined by using finite element method. Model updating of water tank cladding model was done by alters the structure dimension and added stiffener such as hollow beam or c-channel beam. The purpose of these modifications was proposed to reduce the vibration, improve the strength, and optimize the weight of the tank cladding.
ABSTRAK

CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONFESSION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>CONTENT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLE</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURE</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDIX</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 General

1.2 Objectives

1.3 Scopes

1.4 Problem Statement

CHAPTER 2 LITERATURE REVIEW

2.1 Related Research

2.1.1 Overall Discussion on Related Research

2.2 Fire Fighting Vehicle Component

2.3 Fire Fighting trucks classification

2.4 Type of Fire Fighting Vehicles

2.4.1 Airport

2.4.2 Military
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.3</td>
<td>Municipalities</td>
<td>17</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Port</td>
<td>18</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Oil and Gas Industry</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Water Tank Superstructure Component</td>
<td>20</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Outer Structure</td>
<td>21</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Water Tank Cladding Structure</td>
<td>22</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Water Tank</td>
<td>23</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Other Sub Components</td>
<td>24</td>
</tr>
<tr>
<td>2.5.4.1</td>
<td>Mounting</td>
<td>25</td>
</tr>
<tr>
<td>2.5.4.2</td>
<td>Mounting Bracket</td>
<td>25</td>
</tr>
<tr>
<td>2.5.4.3</td>
<td>C-Channel Frame</td>
<td>26</td>
</tr>
<tr>
<td>2.5.4.4</td>
<td>C-Channel Bracket</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Computer-Aided-Design (CAD)</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>Water Tank Cladding Structure</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Ladder Frame Structure</td>
<td>28</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Structure of Ladder Frame Chassis</td>
<td>30</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Mode of Ladder Frame Deflection</td>
<td>31</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Strengthening of the Ladder Frame Chassis</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Theory of Structural Vibration</td>
<td>33</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Causes of Vibration</td>
<td>33</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Reduction of Vibration</td>
<td>34</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Analysis of Structural Vibration</td>
<td>35</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Natural Frequency</td>
<td>35</td>
</tr>
<tr>
<td>2.9.5</td>
<td>Resonance</td>
<td>36</td>
</tr>
<tr>
<td>2.10</td>
<td>Finite Element Method</td>
<td>37</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Conceptual in Finite Element Analysis</td>
<td>38</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Normal Mode Analysis</td>
<td>40</td>
</tr>
<tr>
<td>2.11</td>
<td>Modal Analysis</td>
<td>42</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Fundamentals of Modal Analysis</td>
<td>43</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Theoretical of Modal Analysis</td>
<td>43</td>
</tr>
<tr>
<td>2.12</td>
<td>Structural Analysis</td>
<td>45</td>
</tr>
</tbody>
</table>
CHAPTER 3 METHODOLOGY
3.1 Introduction 47
3.2 Research Methodology 47
3.2 Finite Element Analysis 51
3.2.1 Finite Element for static analysis 51
3.2.2 Modal Analysis 53

CHAPTER 4 RESULT AND ANALYSIS 55
4.0 Modal Analysis 55
4.1 Modal Analysis of Finite Element (FE) Method 55
4.1.1 Mode Shape 57
4.2 Static Analysis 61

CHAPTER 5 STRUCTURAL MODIFICATION 64
5.1 Structural Modifications and Parametric Analysis 64
5.2 Comparison result 69
5.3 Final Result 70

CHAPTER 6 CONCLUSION AND RECOMMENDATION 71
6.1 Conclusion 71
6.2 Recommendations for Future Research 72

REFERENCES 73

APPENDICES 78
LIST OF TABLE

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison between natural frequencies before and after model updating[4]</td>
<td>8</td>
</tr>
<tr>
<td>4.1</td>
<td>Natural frequency from Finite Element Method</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Static analysis from Finite Element Method</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Modification made on the FE Model</td>
<td>65</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison results of static stress analysis before and after modification</td>
<td>69</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison results of natural frequency before and after modification</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Final Result of improvement study</td>
<td>70</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Truck responses spectra (I.M. Ibrahim, et.al. 1994)</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Truck responses spectra – Continued (I.M. Ibrahim, et.al. 1994)</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Finite Element Model of #3 Cross-members (Murali M.R. Krishna, 1998)</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>General truck view</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Failure Location</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Fire Fighting Vehicle Component</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Hazmat</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Articulate Boom</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Tanker Tender</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>Isometric view of Water Tank Superstructure</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>Isometric view of the Outer Structure</td>
<td>22</td>
</tr>
<tr>
<td>2.11</td>
<td>Isometric view of the Water Tank Cladding Structure</td>
<td>23</td>
</tr>
</tbody>
</table>
4.8 Stress contour and deformation pattern of the cladding structure under truck components loading 62

4.9 Deformation contour and the deformation pattern of the cladding structure under truck components loading 63

5.1 Modification made on base structure 65

5.2 Modification made on base frame (superstructure) and the sub-frame. 66

5.3(a) The 2 nodal point of global bending at mode 3 67

5.3(b) Show the modification of sub-frame and mounting point. 68

5.3(c) Mounting location modified to reduce vertical bending at mode 3 68
4.8 Stress contour and deformation pattern of the cladding structure under truck components loading 62

4.9 Deformation contour and the deformation pattern of the cladding structure under truck components loading 63

5.1 Modification made on base structure 65

5.2 Modification made on base frame (superstructure) and the sub-frame. 66

5.3(a) The 2 nodal point of global bending at mode 3 67

5.3(b) Show the modification of sub-frame and mounting point. 68

5.3(c) Mounting location modified to reduce vertical bending at mode 3 68
3.2 Research Methodology Flow Chart 50

3.3 Water Tank Cladding model meshed with the tetrahedral-10 elements 52

3.4 Water tank cladding boundary condition 52

3.5 Dimension of the water tank cladding
(All dimensions in mm) 53

3.6 Base of Water Tank cladding model meshed with the tetrahedral-10 elements 54

4.1 FEA first Global Bending with 2 nodal point
@ 30.89 Hz 58

4.2 FEA second Global Bending with two nodal points @
31.75 Hz 58

4.3 FEA first Global Torsion with one nodal point @
45.41 Hz 59

4.4 FEA third Global Bending with three nodal points @
53.22 Hz 59

4.5 FEA second Global Torsion with one nodal point @
64.65 Hz 60

4.6 FEA fourth Global Bending with three nodal points
@ 69.23 Hz 60

4.7 Placement of load being apply at 10 point 61
2.12 Isometric view of the Water tank
2.13 Location of Sub components
2.14 Mounting
2.15 Mounting Bracket
2.16 C-Channel Frame
2.17 C-Channel Bracket
2.18 Chassis frames for commercial vehicles
2.19 The main structures of ladder-type chassis
2.20 Mode of chassis frame deflection
2.21 Frame flitch
2.22 K-member to stiffen the chassis frame
2.23 The Tacoma Bridge swayed violently caused by wind
2.24 Finite element simulation using MSC.visual Nastran
2.25 Types of element
2.26 Meshing procedure with hexahedral element
2.27 Finite element analysis procedure
3.1 Parallel ladder type frame
LIST OF SYMBOLS

f - Natural frequency
T - Period of harmonic motion
F - Force
k - Spring stiffness
x - Displacement
m - Mass
\ddot{x} - Acceleration
c - Damping coefficient
\dot{x} - Velocity
\omega - Natural frequency
t - Time
[K] - Stiffness matrix to represent elastic properties of a model
[M] - Mass matrix to represent inertial properties of a model
{\ddot{u}} - Acceleration matrix
{u} - Displacement matrix
{\phi} - Eigenvector or mode shape
\lambda - Eigenvalues (the natural or characteristic frequency)
{f} - Vector of applied forces
E - Young's Modulus
\rho - Mass density
\nu - Poisson ratio
LIST OF APPENDIXES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Gantt chart</td>
<td>79</td>
</tr>
<tr>
<td>B</td>
<td>Drawing</td>
<td>81</td>
</tr>
<tr>
<td>C</td>
<td>Fire Fighting Vehicle</td>
<td>82</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

The truck industry has experienced a high demand in market especially in Malaysia whereby the economic growths are very significantly changed from time to time. There are many industrial sectors using the truck for their transportations such as the logistics, agricultures, factories, fire fighting and other industries. Malaysia had invested large amount of money in automotive industry. However, the development and production of truck industries in Malaysia are currently relies on foreign technology and sometime do not fulfill the local market demand in term of costs, driving performances and transportations efficiency.

Nowadays, the current trend in truck design involves the reduction of costs and increase in transportation efficiency. The pursuit of both these objectives results in lighter truck, which uses less material and carries less dead weight. At the same time, the comfort of the driver cannot be neglected as the driver has to operate safely and comfortably for many hours. Water tank cladding is one part in use in water tender that is strongly being influenced by these guidelines of weight and cost reduction. The consequence of a lighter structure is a vehicle that has structural resonance within the range of typical rigid body vibrations of the truck subsystems. On the other hand, the vibration also can be formed due to dynamic forces induced by the road irregularities, engine, transmission and more. Thus under these various dynamic excitation, the chassis will tend to vibrate and can lead to ride discomfort, ride safety problems, road.
1.1 Objectives

The objectives of this project are:

i) To determine the maximum weight saving for the water tank structures.
ii) To optimize the existing water tank structure base from the structural analysis.
iii) To develop new water tank cladding.

1.2 Scopes

The scopes of study for this project are:

a) Study on the water tank superstructure of the Fire Fighting Vehicle.
b) To do static analysis base computational on the existing superstructures.
c) Optimize the existing superstructures design to fully utilize it structural strength
d) To conduct and demonstrate a 3D modeling and simulation analysis using appropriate tool to collect data analysis

1.3 Problem Statement

In Malaysia, the vehicle models that have been developed almost the same appearance since the models developed in 20 or 30 years ago. This indicates that the evolutions of these truck components are still behind from other countries and research and development technology is not fully utilized in our country. This is a major challenge to truck manufactures to improve and optimize their vehicle designs in order to meet the market demand and at the same time improve the vehicles durability and performance.
The water tank superstructure basically consists of frame structure, c-channel beam, and bracket such as mounting bracket. The frame structure is the main component in the structure. However, the effects of changes to the frame and beam are not well understood in term of vehicle response during riding especially on the effect of water tank with its maximum load on bumpy and off-road conditions. For example, if the torsion stiffness of a support beam is lowered, what is the effect on the vehicle's roll stability, handling, ride and durability? Therefore, the main criteria in the analysis is the behavior of water tank cladding structure, how to improve the current design for better riding quality and support stability.

On overall, this research study is really requiring attention to improve the existing condition for betterment of riding quality and stability. There are major areas need to be established in the study to come out with proper investigation on water tank cladding structure especially research methodology on computational analysis. The ultimate result would be improvement of vehicle quality, reliability, flexibility, efficiency and low production cost.
CHAPTER 2

LITERATURE REVIEW

This chapter reviews the related research involving truck structure component. The review of the available information related to the study area will help to get more ideas on the project. It's also discussed the basic theory of the components that are used in the research such as the fire fighting vehicle, water tank cladding structure, theory and mechanics of vibration, basic concept of finite elements method, modal analysis and structural analysis. All the information was gathered mostly from text books, journals and internet.

There are two main objectives of the development of water tank structure. Firstly, the appropriate static and dynamic characteristics of the existing structure have to be determined. Secondly, structural development process in order to achieve high quality of the product. There are many factors such as excitation from engine and road that involve which can affect on the vehicle rolling, handling, ride stability and etc.

2.1 Related Research

Today, there are many researches and development program available in the market especially by the international truck manufacturers, which are very much related to this study. Therefore, there are several technical papers from the
‘Engineering Society for Advancing Mobility Land Sea Air & Space’ (SAE) and some other sources which are reviewed and discussed in this chapter.

Dave Anderson and Greg Schade (2001) developed a Multi-Body Dynamic Model of the Tractor-Semitrailer for ride quality prediction. The studies involved representing the distributed mass and elasticity of the vehicle structures e.g. frame ladder, the non-linear behavior of shock absorbers, reproduce the fundamental system dynamics that influence ride and provide output of the acceleration, velocity and displacement measures needed to compute ride quality. There were three main factors contributed in this study. Firstly, the author had come out with the development of an ADAMS multi-body dynamics model for use as a predictive tool in evaluating ride quality design improvement. The model includes frame, cab and model generated from finite element component mode synthesis. Second, the construction and correlation of the model has been developed and followed a multi-step process in which each of the major sub-systems were developed and validated to test results prior to corporation in the full vehicle model. Finally, after a series of refinements to the model, the next steps were implemented to obtain an acceptable degree of correlation. The author had managed to evaluate the model’s ability to predict ride quality by using accelerations measured in the component, which were then processed through an algorithm to compute an overall ride comfort rating.

I.M. Ibrahim, et.al. (1994) had conducted a study on the effect of frame flexibility on the ride vibration of trucks. The aim of the study was to analyze the vehicle dynamic responses to external factors. The spectral analysis technique was used in the problem study. Other than that, the driver acceleration response has been weighted according to the ISO ride comfort techniques. From the author point of view, the excessive levels of vibration in commercial vehicles were due to excitation from the road irregularities which led to ride discomfort, ride safety problems, road holding problems and to cargo damage or destruction. Also, it has been found that the frame structure vibrations due to flexibility have a similar deleterious effect on the vehicle dynamic behavior. In order to study the frame flexibility, the author had came out with the truck frame modeled using the Finite Element Method (FEM) and its modal properties have been calculated. Numerical results were presented for the truck, including power spectral densities and root mean square values of the vehicle.
dynamic response variables. The results show that there was good agreement with the experimental analysis and that modeling technique was a very powerful and economical for the analysis of complex vehicle structures. From the comparison of the responses of the rigid and flexible body models it has been found that the frame flexibility strongly affects the accelerations of both driver and truck body. Therefore, the author suggested that the frame flexibility effects were taken into account in the design of primary, cab and engine suspension systems.

As a comparison, Figure 2.1 is shown the response of the rigid and flexible body model of the parameters that has been tested.

(a)

(b)

Figure 2.1 – Truck responses spectra (I.M. Ibrahim, et.al. 1994)