POTENTIAL APPLICATION OF TAPIOCA STARCH / SUGAR CANE FIBER CELLULOSE GREEN COMPOSITE FOR DISPOSABLE PACKAGING FOOD CONTAINER

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) with Honours

by

NURUL FARIHA BINTI OTHMAN

FACULTY OF MANUFACTURING ENGINEERING
2010
JUDUL: POTENTIAL APPLICATION OF TAPIOCA STARCH / SUGAR CANE FIBER CELLULOSE GREEN COMPOSITE FOR DISPOSABLE PACKAGING FOOD CONTAINER

SESi PENGAIJAN: 2009-2010

Saya NURUL FARIHA BINTI OTHMAN

mengaku membenarkan laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

____________________ ______________________
(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap: Cop Rasmi:
221 JLN CEMPAKA 12, TMN CEMPAKA, 84800 BUKIT GAMBIR, LEDANG, JOHOR.

Tariikh: ________________________ Tariikh: ________________________

** Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this report entitled “Potential Application of Tapioca Starch / Sugar Cane Fiber Cellulose Green Composite for Disposable Packaging Food Container” is the result of my own research except as cited in references

Signature : ...

Author’s Name : Nurul Fariha Binti Othman

Date : 11th May 2010
This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials) with Honours. The member of the supervisory committee is as follow:

..

(Mr. Jeefferie B. Abd Razak)
ABSTRACT

The noble aim of this research is to investigate extensively the potential application of Tapioca Starch (TS) filled Sugar Cane Fiber Cellulose (SCFC) biocomposites for disposable packaging food container. This research was started by preparing and characterizing the SCFC through various characterization tools. The effect of the optimum SCFC loading to the fabricated TS composites was studied as to establish the best formulation of the TS/SCFC biocomposites. The thin sheet of composite samples were then fabricated with different blend formulation via compression molding machine and the samples were cut into the specific dimension, according to the ASTM standard for each different testing. Further testing for various engineering properties of TS/SCFC biocomposites were carried out, such as tensile test, impact test, flexural test and hardness test. These tests were used to determine the mechanical properties of the fabricated composites. Then, it was followed by conducting the physical test such as weathering test, water absorption test and the thickness swelling test. Other than that, the Fourier Transform Infrared (FTIR) analysis was conducted as to investigate the degradation behavior of the biocomposites. In order to observe the fracture morphology of the samples, the optical microscope was utilized comprehensively. Generally, the results of this study have shown good performance for both the mechanical and physical properties of the fabricated composites. However, through the morphological observation on the mechanical and physical testing fractured surfaces, it was clearly found that the adhesion between the SCFC and TS matrix were not well attached. This study has indicated the role of fiber loading into the resulted properties of the fabricated composites. Development of this alternative container material for food packaging application will provide a great potential solution to the environmental friendly and safe packaging medium either for food, consumer or environment as a whole.
DEDICATION

For My Beloved Father Hj. Othman B. Mean
My Beloved Mother Hjh. Jami’ah Bt. Md. Salleh
My Sisters Nurul Ain and Nurul Umairah
My Younger Brother Muhammad Syukri
My Dear Friend Mohd Shafeq B. Md Sharif
My Supervisor Mr. Jeefferie B. Abd Razak
 My friends and all technicians
 Thanks for supporting me…
ACKNOWLEDGEMENT

In the name of Allah, the most Compassionate, the most Merciful. Alhamdulillah, thousand of thanks to Allah S.W.T for a blessing, courage and strength, I have completely done my report as it is today. Praised to Him alone for His endowment, that let me to complete this report. Finally, the report has been completed within the specified period. Although there is a lot of an obstacles and barriers that I have been through, by the assistant and guidance from my supervisor, finally I can manage it well.

First of all, I would like to express my gratitude and appreciation to my supervisor Mr. Jeefferie Bin Abd Razak, lecturer in Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, for his invaluable suggestions, guidance and constant encouragement to me.

My special appreciation goes to all Engineering Materials Laboratory technicians who willingly spared their time in helping me on the sample preparations and performing the tests. I also wish to thank all my friends for their continuous support and help especially in periods of uncertainties and difficulties.

Finally yet importantly, I am grateful to others that contribute, especially to my parents and family for their caring, encouragement, invaluable advice and support. Sincerely no words could be said for the things that you all have done for me. I am grateful indebted for all the favors and supports. Thank you and May Allah Bless all of you.

Thank you.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Approval</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Abstrak</td>
<td>iv</td>
</tr>
<tr>
<td>Dedication</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>vi</td>
</tr>
<tr>
<td>Table of Content</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Hypotheses</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Importance of Study</td>
<td>4</td>
</tr>
<tr>
<td>1.6 Scope of Study</td>
<td>5</td>
</tr>
<tr>
<td>1.7 Thesis Overview</td>
<td>6</td>
</tr>
</tbody>
</table>

2. LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Composites</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Polymer Matrix Composites (PMC)</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Matrix</td>
<td>9</td>
</tr>
<tr>
<td>2.5 Biodegradable Material</td>
<td>10</td>
</tr>
<tr>
<td>2.5.1 Tapioca Starch as Matrix</td>
<td>12</td>
</tr>
<tr>
<td>2.6 Reinforcement</td>
<td>13</td>
</tr>
<tr>
<td>2.7 Natural Fiber</td>
<td>15</td>
</tr>
<tr>
<td>2.7.1 Sugar Cane Fiber Cellulose (SCFC) as Natural Fiber</td>
<td>17</td>
</tr>
</tbody>
</table>
2.7.2 Properties of Sugar Cane Fiber Cellulose (SCFC) 19
 2.7.2a. Chemical Properties 19
 2.7.2b. Physical Properties 20
 2.7.2c. Mechanical Properties 20
2.7.3 Moisture Content 21
2.7.4 Sieve Analysis 21
2.7.5 Particles Size Analysis 22
2.8 Glycerol as plasticizer 23
 2.8.1a. General Properties of Glycerol 24
 2.8.1b. Physical Properties of Glycerol 24
 2.8.1c. Stability and Reactivity Properties of Glycerol 25
 2.8.1d. Ecological Information 26
2.9 Packaging Food Container 26
2.10 Processing of Composites 28
2.11 Rules of Mixtures (ROM) 28
 2.11.1 Density 29
 2.11.2 Modulus of Elasticity 29
2.12 Fiber Loading 30
2.13 Mechanical Properties of the Composites 31
 2.13.1 Tensile Properties 31
 2.13.2 Impact Properties 32
 2.13.3 Flexural Properties 32
 2.13.4 Hardness Properties 33
2.14 Physical Properties of the Composites 34
 2.14.1 Weathering Properties 34
 2.14.2 Water Absorption Properties 35
 2.14.3 Thickness Swelling Properties 36
2.15 Degradation Study 37
 2.15.1 Fourier Transform Infrared Spectroscopy (FTIR) Analyzer 37
2.16 Morphology Study 39
 2.16.1 Optical Microscope 39
3. METHODOLOGY

3.1 Introduction

3.2 Methodology
 3.2.1 Flow Chart of Methodology

3.3 Materials
 3.3.1 Tapioca Starch (TS)
 3.3.2 Sugar Cane Fiber Cellulose (SCFC)
 3.3.3 Glycerol

3.4 Raw Materials Preparation
 3.4.1 Sugar Cane Fiber Cellulose (SCFC) Drying Process
 3.4.2 Crushing Process

3.5 Characterization of Sugar Cane Fiber Cellulose
 3.5.1 Drying Study
 3.5.2 Water Absorption
 3.5.3 Density Measurement
 3.5.4 Microscopy Study

3.6 Sample Fabrication
 3.6.1 Compounding of TS/SCFC
 3.6.2 Hot Compression Molding

3.7 Mechanical Testing
 3.7.1 Tensile Test
 3.7.2 Impact Test
 3.7.3 Flexural Test
 3.7.4 Hardness Test

3.8 Physical Test
 3.8.1 Weathering Test
 3.8.2 Water Absorption Test
 3.8.3 Thickness Swelling Test

3.9 Degradation Study
 3.9.1 Fourier Transform Infrared Spectroscopy (FTIR) Analyzer

3.10 Morphological Observation
4. RESULTS AND DISCUSSIONS

4.1 Introduction

4.2 Raw Materials Characterization
 4.2.1 Drying Characteristic of SCFC
 4.2.2 Water Absorption Behavior of SCFC
 4.2.3 SCFC of Density Measurement
 4.2.4 Microscopy Observation of SCFC

4.3 Observation of Sample Preparation Process
 4.3.1 Processing characteristics of TS/SCFC composites

4.4 Critical Property Analysis of Tensile Test

4.5 Impact Properties of TS/SCFC composites
 4.5.1 Impact Properties
 4.5.2 Fractured Surface Morphology of Impact Specimen

4.6 Flexural Properties of TS/SCFC composites
 4.6.1 Flexural Properties
 4.6.2 Fractured Surface Morphology of Flexural Specimen

4.7 Hardness Properties of TS/SCFC composites
 4.7.1 Hardness Properties
 4.7.2 Fractured Surface Morphology of Hardness Specimen

4.8 Weathering Properties of TS/SCFC composites
 4.8.1 Weathering Properties
 4.8.2 Fractured Surface Morphology of Weathering Specimen

4.9 Water Absorption Properties of TS/SCFC composites
 4.9.1 Water Absorption Properties
 4.9.2 Fractured Surface Morphology of Water Absorption Specimen

4.10 Thickness Swelling Properties of TS/SCFC composites
 4.10.1 Thickness Swelling Properties
 4.10.2 Fractured Surface Morphology of Thickness Swelling Specimen

4.11 FTIR Properties of TS/SCFC composites
 4.11.1 FTIR Properties
5. CONCLUSION AND RECOMMENDATIONS 98

5.1 Conclusion 98
5.2 Recommendations 99

REFERENCES 100

APPENDICES

A Gantt Chart for PSM I 110
B Gantt Chart for PSM II 111
C Sample preparation formulation 112
D Results of Impact Charpy Test 113
E Results of Hardness Test 114
F Results of Water Absorption Test 115
G Results of Thickness Swelling Test 116
LIST OF TABLES

2.1 Specification for tapioca starch 12
2.2 Comparison of starch gelatinization temperature range 13
2.3 Advantages and disadvantages of using natural fibers in composites 16
2.4 The various properties of some natural fiber 17
2.5 Bagasse chemical compositions 18
2.6 Chemical composition of SCFC in comparison to the other fiber types 19
2.7 Physical characteristic for some common types of fiber 20
2.8 Mechanical properties of some natural fibers 21
2.9 Equilibrium moisture content (EMC) of different natural fibers 21
2.10 The sieve times and weight of bagasse 22
2.11 Sugarcane residues ultimate analysis 23
2.12 General information of glycerol 24
2.13 Physical properties of glycerol 25
2.14 Mechanical properties of nonwoven samples 31
2.15 Effect of weathering on composite bending stiffness 35
2.16 Thickness swelling of bagasse particle board (BPB) after the 24-hour water soaking 37

3.1 The basic physical properties of the TS used 42
3.2 The basic physical properties of the glycerol used 43

4.1 Percentage of weight losses for SCFC 58
4.2 Water absorption characteristic of sugarcane fiber cellulose (SCFC) 60
4.3 Density Measurement of sugar cane fiber cellulose 62
4.4 Composition formulation for each fabricated samples 65
4.5 Tensile properties of starch film with different ratio of glycerol content 66
4.6 Impact properties of pure TS and TS/SCFC composite with the presence of glycerol 68
4.7 Day by day sample observation of weathering test 81
4.8 Water absorption of pure TS and TS/SCFC composite with the absence and presence of glycerol 84
4.9 Thickness swelling of pure TS and TS/SCFC composite with the presence of glycerol 90
4.10 Thickness swelling of bagasse particleboard after 24-hours water soaking 92
LIST OF FIGURES

2.1 Fiber orientation in fiber reinforced composites 14
2.2 Classification of natural fibers 15
2.3 Part of the stalk (stripped of leaves) 17
2.4 Particle size distribution 22
2.5 Variation of the composite micro hardness with the amount of bagasse fiber 34
2.6 Properties of corn starch and tapioca starch films with different ratio of starch content to glycerol content 36
2.7 FTIR absorption spectra of PC samples before and after hydrothermal aging for 26 days 38
2.8 Images of sago starch granules with 1000x magnification, Photomicrographs B, C and D illustrate morphological changes in starch granules after acid-methanol, acid-ethanol and acid-2-propanol treatments respectively at 450C for 1 hour 39

3.1 Flow chart of methodology 41
3.2 Tapioca starch 42
3.3 Sugar cane fiber cellulose 43
3.4 Glycerol 44
3.5 Dried sugar cane fiber cellulose 45
3.6 Rotor mill machine 45
3.7 Drying SCFC 46
3.8 Electronic Densimeter 47
3.9 Optical Microscope 47
3.10 HAAKE Rheomix OS 49
3.11 Hot compression molding 49
3.12 Universal Testing Machine (UTM) 50
3.13 Tensile specimen 51
3.14 Charpy Types Specimen 51
3.15 Flexural Testing at three-point bending process 52
3.16 Standard test configuration of flexural test 52
3.17 Shore Durometer hardness
3.18 FTIR analyzer
3.19 Optical Microscope

4.1 Percentage of weight losses for SCFC
4.2 Water absorption of sugarcane fiber cellulose (SCFC)
4.3 Comparison of density measurement with other fibers
4.4 Morphology of the sugar cane fiber cellulose (SCFC) at the 1x of magnification
4.5 The mixture of TS and SCFC
4.6 Impact energy of TS/SCFC at different composition
4.7 Charpy Impact properties of various fibers
4.8 Impact fractured morphology of (a) 53% tapioca starch and 47% glycerol; (b) 50% tapioca starch, 3% SCFC and 47% glycerol; (c) 47% tapioca starch, 6% SCFC and 47% glycerol; (d) 44% tapioca starch, 9% SCFC and 47% glycerol and (e) 41% tapioca starch, 12% SCFC and 47% glycerol
4.9 Flexural Modulus of pure TS and TS/SCFC composite with the presence of glycerol
4.10 Flexural Modulus for different types of fiber
4.11 Flexural fractured morphology of (a) 53% tapioca starch and 47% glycerol; (b) 50% tapioca starch, 3% SCFC and 47% glycerol; (c) 47% tapioca starch, 6% SCFC and 47% glycerol; (d) 44% tapioca starch, 9% SCFC and 47% glycerol and (e) 41% tapioca starch, 12% SCFC and 47% glycerol
4.12 The hardness value of five different composition
4.13 Hardness fractured morphology of (a) 53% tapioca starch and 47% glycerol; (b) 50% tapioca starch, 3% SCFC and 47% glycerol; (c) 47% tapioca starch, 6% SCFC and 47% glycerol; (d) 44% tapioca starch, 9% SCFC and 47% glycerol and (e) 41% tapioca starch, 12% SCFC and 47% glycerol
4.14 Weathering fractured morphology of (a) 53% tapioca starch and 47% glycerol; (b) 50% tapioca starch, 3% SCFC and 47% glycerol; (c) 47% tapioca starch, 6% SCFC and 47% glycerol; (d) 44% tapioca starch, 9% SCFC and 47% glycerol and (e) 41% tapioca starch, 12% SCFC and 47% glycerol

4.15 Water absorption of the fabricated samples before and after the experiment

4.16 Water absorption characteristic of TS/SCFC composites at different composition

4.17 Water absorption characteristic of different types of fiber

4.18 Water absorption fractured morphology of (a) 53% tapioca starch and 47% glycerol; (b) 50% tapioca starch, 3% SCFC and 47% glycerol; (c) 47% tapioca starch, 6% SCFC and 47% glycerol; (d) 44% tapioca starch, 9% SCFC and 47% glycerol and (e) 41% tapioca starch, 12% SCFC and 47% glycerol

4.19 Comparison of TS/SCFC/Glycerol at different composition

4.20 Thickness swelling of five formulations by before and after experiments

4.21 Thickness swelling test of TS/SCFC/Glycerol at different composition

4.22 Thickness swelling fractured morphology of (a) 53% tapioca starch and 47% glycerol; (b) 50% tapioca starch, 3% SCFC and 47% glycerol; (c) 47% tapioca starch, 6% SCFC and 47% glycerol; (d) 44% tapioca starch, 9% SCFC and 47% glycerol and (e) 41% tapioca starch, 12% SCFC and 47% glycerol

4.23 FTIR spectra of TS/SCFC composites with various fiber loading

4.24 FTIR spectra of gelatin, cassava starch, chitosan films and their blends

4.25 FTIR spectra of cassava starch films containing (a) 0%; (b) 15%; (c) 30%; (d) 45% glycerol
LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

ASTM American Standard Testing of Materials
CAGR Compound Annual Growth Rate
CMC Ceramic Matrix Composite
DSC Differential Scanning Calorimetry
Eg. Example
EMC Equilibrium moisture content
et al. and others
etc. Et cetera
FTIR Fourier Transform Infrared Spectroscopy (FTIR) Analyzer
HDPE High Density Polyethylene
MAPP Maleic-Anhydride Grafted Polypropylene
MMC Metal Matrix Composite
PC Polycarbonates
PHA Polyhydroxyalkanoate
PLA Polylactate
PMC Polymer Matrix Composite
TS / SCFC Tapioca starch reinforced sugar cane fiber cellulose
RH Relative humidity
RoM Rules of Mixtures
SCAR Sugar Cane Agricultural Residues
SCFC Sugar Cane Fiber Cellulose
SPC Soy Protein Composites
SPI Soy Protein Isolates
TS Tapioca Starch
wt% Percent of weight fraction
WA Water Absorption
CHAPTER 1
INTRODUCTION

1.1 Introduction

Plastics due to their versatility are making great in the field of packaging of a variety products such as processed and convenience foods, pharmaceuticals and medicines, cosmetics and toiletries, household and agricultural chemicals, petroleum products and detergent and etc. As we know, plastic containers have actually succeeded in replacing metal, glass, tin, aluminum and paper containers in many applications. The advantages of plastics are light and less bulky than other packaging materials, can be processed into any desired shape or form such as films, sheets and pouches, it save costs of storage and transportation because of lower volume, easy for coloring, no rusting and good water resistance. Although plastic package have tremendous advantages, they have been some limitations that includes some chemical attack on particular plastics, less heat resistance, tendency to creep, lower gas barrier and lower dimensional stability (Kadoya, 1990; Athalye, 1992).

In addition, there are serious problems connected with the analytical control of such materials; toxic hazards from the modified plastics and also from their degradation products, increased costs and the possible encouragement of litter (including non plastics component). In order to reduce this problem, the application of using biodegradable material is an alternative method. Biodegradable which are often produced from renewable sources, are being increasingly sought after by food processors as part of a solution to environmental concerns over waste and the use of fossil fuels. The process is called biodegradation (Dong et al. 2008). Biodegradation is a natural process by which organic chemicals in the environment are converted to
simpler compounds, mineralized, and redistributed through the elemental cycles such as the carbon, nitrogen, and sulphur cycles through the action of naturally occurring microorganism.

In this research, biodegradable polymer matrix composites were developed. There are two natural components will be combined in the fabrication of innovative biocomposites for the application of food packaging. One is a natural biofiber utilizing sugar cane fiber cellulose (SCFC) while the other is biodegradable matrix material which is tapioca starch (TS). Sugar cane has played an important role in enhancing the composites performance as filler reinforcement. In addition, it was combined with tapioca starch that acts as matrix which has many advantages to the environment. It is anticipated that the development of this product, was contribute to the world as novel biodegradable, non-toxic and non-allergenic bio environmental friendly natural green products.

Nevertheless, there is considerable interest and noble aims in this research where to produce an alternative material by compounding tapioca starch and sugar cane fiber cellulose to replace the existing non biodegradable plastic material in the market. Thus, in overall, this research formulated the biopolymer based composites filled with an agro-waste biofiller by using the internal mixer compounding method in order to investigate and understand the behavior, mechanism and kinetic of degradation for the TS/SCFC biocomposites.

1.2 Problem Statement

Great attentions are focused on the utilization of the natural plant fibers to replace the synthetic fibers in the development of polymeric based composites materials. This is due to the advantages of renewability, low density and high specific strength as well as biodegradable and recyclable at the very reasonable cost (Ochi, 2008). These fibers outstanding properties such as high specific strength and stiffness, impact resistance, flexibility, and modulus make them an attractive alternative over the traditional materials (Sgriccia et al. 2008). Specifically, good properties of sugar cane fiber cellulose includes good specific strengths and modulus, economical
viability, low density and low weight has made them as a promising reinforcement of choice by the industry. Thus, natural fiber like sugarcane can be used as a replacement to the conventional fiber, since the global environmental issues have led to renewed interest in the development of bio-based materials (Chen and Chung, 1993).

It is important and possible to produce a new types of material that exhibit the economically and environmentally friendly benefits for packaging applications in food packaging industries. By combining two different resources, it is possible to blend, mix or process the natural fiber with other elements such as plastics or synthetics material to produce new classes of materials. The important things is to ensure that the fabrication are employed in the controlled temperature processing, because the degradation of the sugarcane will lead to the failure or poor performance to the properties of the fabricated composites (Hanlon et al. 1998). Therefore, the selection of suitable processing temperature is crucially important consideration especially when dealing with the fabrication of heat sensitive biopolymer of TS / SCFC green composites. Thus, in this research, study on the effects of the processing parameter to the final properties of the fabricated composites, will be the major focused. The potential of the composites produced to be naturally degraded will be tested, understood and studied comprehensively.

1.3 Objectives

The purposes of this study are:

1.3.1 To formulate biopolymer based composites filled with agro-waste biofiller by using an internal mixer compounding method.

1.3.2 To establish the mechanical, physical and morphological data observation for the novel fabricated TS / SCFC biocomposites in comparisons to the other biocomposites.
1.4 **Hypotheses**

1.4.1 The contents of fiber loading or proportion of SCFC used of this study will affect the final properties of the fabricated composites. It is expected that, by increasing the proportion of fiber loading, the properties of the fabricated composite will be increased correspondingly in accordance to the rules of mixture (RoM) theory.

1.4.2 Introduction of biopolymer in this study will increase the final properties of the fabricated composites provided that, good interfacial adhesion formed between the surface interaction of TS / SCFC biocomposites. Thus, it is expected that by increasing the compounding temperature and speed of the roller rotors rotation, it will improves the interfacial adhesion of the composites produced.

1.4.3 It is expected that, the biofiller used will further enhanced the rate of degradability of the composites produced. Thus, by increasing the weight percentage or SCFC loading in one matrix of TS, it will accelerate the kinetic in degradation.

1.5 **Importance of Study**

Critically, the noble aim of this research which to develop the green materials for the application of food packaging. Thus, by conducting this research, it is expected that it will be benefited to the environment that suffer with the non-degradable waste of plastic food packaging caused by uncontrolled solid waste disposal and extensive use of this necessity. Development of this novel food packaging alternative will create potential solution to the environmental friendly and safe packaging medium either for food, consumer or environment as a whole.
1.6 Scope of Study

Sugar cane fiber cellulose (SCFC), tapioca starch (TS) and glycerol were used in this research as raw materials. The study was started by preparing and characterizing the sugar cane fiber as reinforcement material. The next stage involves the drying study of SCFC. SCFC were dried in the drying oven for several period of time and the weight losses of fibers were determined accordingly. Then, TS, SCFC and glycerol were compounded by using the internal mixer. The effect of optimum filler loading to the fabricated composites will be further studied and the best formulation of composites was suggested. After that, compression molding machine was utilized to prepare the samples. The blend of fiber and matrix were pressed by using the compression molding machine to produce the thin sheet of composites samples. The fabricated composites were cut into the specific dimension according to the ASTM standard for various types of selected testing. The best compounding of TS / SCFC will be determined by one-factor-at-time (OFAT) statistical method. In order to achieve the objectives of this research, further testing analysis for various engineering properties of TS / SCFC were carried out such as tensile test, impact test and flexural test. These tests were used to determine the mechanical properties of the samples. Then, it was followed by the physical test such as weathering test, water absorption test and thickness swelling test. Other than that, the Fourier Transform Infrared (FTIR) was conducted as to investigate the degradation behavior of the composites produced. In order to observe the fracture morphology of the sample, the optical microscope was utilized. Fractured samples from the flexural testing, impact testing and hardness testing were thoroughly viewed.