Analysis the Contribution and Effect of Coolant to Surface Roughness in Cylindrical Grinding

This report submitted in accordance with the requirements of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Process) with Honours

by

MOHD IZWAN BIN MANSOR

FACULTY OF MANUFACTURING ENGINEERING

2009
TAJUK:
“ANALYSIS THE CONTRIBUTION AND EFFECT OF COOLANT TO SURFACE ROUGHNESS IN CYLINDRICAL GRINDING”

SESU PENGAJIAN:
2008/2009 Semester 2

Saya MOHD IZWAN BIN MANSOR mengaku membenarkan laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
4. “Sila tandakan (√)

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
☐ TIDAK TERHAD

__
NO 30 JALAN MAKMUR 27,
TAMAN DAMAI JAYA,
81300 SKUDAI, JOHOR

Cop Rasmi:

Tarikh: 14 May 2009

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this report entitled “Analysis The Contribution And Effect Of Coolant To Surface Roughness In Cylindrical Grinding” is the result of my own research except as cited in references.

Signature : ..
Author’s Name : MOHD IZWAN BIN MANSOR
Date : 14 MAY 2009
This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process) with Honours. The member of the supervisory committee is as follow:

(Signature of Supervisor)

EN MOHD AMRI BIN SULAIMAN
(Official Stamp of Supervisor)
ABSTRACT

This research represents about Analysis the Contribution and Effect of Coolant to Surface Roughness in Cylindrical Grinding. This process is done on the Universal Cylindrical Grinder OD-820H in Manufacturing Laboratory in Universiti Teknikal Malaysia Melaka. Experiment is conducted using a Stainless Steel SUS 304 as a work piece material with dimension of 28mm x 100mm. There are use same coolant with 3 different brix concentrtion. The coolant used in this research is Pretech Cool SYN 3000 Green. The parameters that involve in this research are work head speed, depth of cut, and traverse speed. All other parameters are constant such as coolant which is Pretech Cool SYN 3000 Green with 3%, 6% and 9% Brix concentration. Profilometer of Surface roughness Tester Mitutoyo SJ-301 will be used to measure and identify the surface roughness and it values. This will determine the surface roughness of the material after completing the grinding operations. The factors that influence the surface roughness is will be identified after the material have been machined. Interpretation of result will used for further reference for checking suitable condition parameter on various conditions of operations.
DEDICATION

For my beloved parent, my family best friend and all friends, and to those who’s with me all this time
Alhamdulillah, Thank to Allah the Almighty God for giving me strength and patience to work on this Final Year Project Report.

I would like to take this opportunity to express my sincere and deepest gratitude to my Project Supervisor; Mr. Mohd Amri Bin Sulaiman, for his guidance and opinion in the cause of completing this report.

My greatest thanks to my beloved family for their prayers, support, and encouragement to me for throughout this entire period of this Final Year Project 1 and 2. I would like to thanks Dr. Mohd. Rizal Bin Salleh Dean of Faculty of Manufacturing Engineering, University Technical Malaysia, Melaka, Dr Ahmed Kamely Bin Mohamad Head of Manufacturing Process Department, Mr Mohd Shahir Bin Kasim examiner presentation PSM and to all the lectures in the faculty.

I also would like to convey my biggest thanks to all FKP technicians for supporting me throughout my project. The knowledge and experience I gained from you all will not be forgotten.

I’m also obliged to everyone who had directly and indirectly involve through contributions of ideas, as well as materials and professional opinions.

Last but not least all my friends out there for their moral support and valuable help that they have provided me throughout my project.
TABLE OF CONTENT

Abstract i
Abstrak ii
Dedication iii
Acknowledgement iv
Table of Content v
List of Tables ix
List of Figures xi
List Abbreviations xiii

1. INTRODUCTION

1.1 Background of project 1
1.2 Problem statement 3
1.3 Objectives 3
1.4 Scope of project 4

2. LITERATURE REVIEW

2.1 Introduction 5
2.2 Cylindrical Grinding Machine 6
2.3 Profilometer Surface Roughness Tester Mitutoyo SJ-301 8
 2.3.1 Advantages of contact profilometers 10
 2.3.2 Review: Surface Roughness 11
 2.3.3 Description of surface roughness 12
2.4 Material 15
 2.4.1 Stainless Steel SUS 304 15
2.5 Refractometer 17
 2.5.1 Reflection systems 18
 2.5.2 Refractometer advantages 18
2.6 Coolant
 2.6.1 Lubricating capability
 2.6.2 Benefits
 2.6.3 Semi synthetics
 2.6.4 Synthetics
 2.6.5 Benefits of Cutting Fluids
2.7 Fluid Concentration

3. METHODOLOGY

 3.1 Introduction
 3.2 Studies of cylindrical grinding operation and process
 3.3 Methodology of machining operations
 3.4 Planning for material preparation
 3.5 Research of parameter in cylindrical grinding process
 3.5.1 Wheel speed (spindle speed)
 3.5.2 Traverse speed
 3.5.3 Depth of cut
 3.5.4 Machining Parameter Setup
 3.5.5 Coolant Setup Parameter
 3.6 Machining process
 3.6.1 Horizontal Band Saw Machine
 3.6.1.1 Procedure to use Horizontal Band saw Machine
 3.6.2 Turning Lathe Machine
 3.6.2.1 Procedure turning process
 3.6.3 Setup coolant brix concentration
 3.6.3.1 Procedure to setup coolant brix concentration
 3.6.4 Starting up Cylindrical Grinding Machine
 3.6.5 Truing and Dressing a Grinding Wheel
 3.6.6 Performing Grinding on the Work piece
 3.7 Study Method for Surface Roughness
 3.8 Recording, Collecting and Analyzing Data Measurement and Data of Surface Roughness
4. RESULT

4.1 Introduction 56
4.2 Area of Contact 56
4.3 Effect of Grinding Due To Surface Roughness 57
4.4 Microstructure result between 3 types of coolant 64

5. ANALYSIS AND DISCUSSION

5.1 Introduction 65
5.2 Influence of coolant to surface roughness 65
5.2.1 Statistical/Hypothesis Test 66
5.2.2 Procedures in Hypothesis Testing 66
5.2.3 Hypothesis Test Procedure 67
5.2.3.1 Statistical test comparison between 3% Brix Concentration With 6 % Brix Concentration 67
5.2.3.2 Statistical test comparison between 3% Brix Concentration With 9 % Brix Concentration 69
5.2.3.3 Statistical test comparison between 6% Brix Concentration With 9 % Brix Concentration 72
5.2.3.4 Comparison data between Best value with Bad value of surface Roughness 74
5.3 Influence of grinding parameter 77
5.4 Other Variable effect of coolant to surface roughness 80
5.4.1 Effect of grinding variable on temperature 80
5.4.2 Vibration 81
5.4.3 Method of Measurements 81
5.4.4 Dressing 82
5.4.4.1 Un-uniformity Dressing 82
5.4.5 Spark 83
5.4.6 Grinding Fluid mixed with dust 84
6. CONCLUSION

6.1 Conclusion 86
6.2 Recommendation 88

REFERENCES 89

APPENDICES
A Wheel Marking and Shape Of Wheel
B Cylindrical Grinding Machine Specifications
C Description of Machine I and Description of Machine II
D Standards SJ-301 Configuration
E Switching the profile filter
F Basic Specifications MITUTOYO Surftest SJ-301 Portable Surface Roughness Tester
G Data Recorded of Surface Roughness 3, 6 and 9% brix concentration
H Surface Roughness Texture Profile Method
I The Indication of Surface Lay According to ISO 1302, 2001
J Roughness from process factor
K Specifications of Refractometer
L Table T-Test and F-Test
M Surface Roughness Result for 3, 6 and 9% brix concentration
LIST OF TABLES

2.1 Chemistry % by weight 15
2.2 Room-Temperature Mechanical Properties and Typical Application of Selected Annealed Stainless Steel 16
2.3 Mechanical Properties for Stainless Steel 304 16
3.1 Gantt Chart PSM 1 28
3.2 Gantt Chart PSM 2 29
3.3 Recommend wheel speed 34
3.4 Feed rate per grinding 35
3.5 Relations between variable and fix parameters 36
3.6 Parameter spindle speed, traverse speed and depth of cut 36
3.7 Data parameter for coolant A 37
3.8 Data parameter for coolant B 37
3.9 Data parameter for coolant C 38
3.10 Description step use Surface Roughness Tester 53
4.1 Data Recorded of Surface Roughness measurement use 3 Brix Concentration 58
4.2 Data Recorded of Surface Roughness measurement use 6 Brix Concentration 59
4.3 Data Recorded of Surface Roughness measurement use 9 Brix Concentration 60
4.4 Data recorded of Surface Roughness comparison between 3 types of coolant in Surface Roughness (Best Value) 62
4.5 Data recorded of Surface Roughness comparison between 3 types of coolant in Surface Roughness (Bad Value) 63
5.1 Surface Roughness Average for Coolant Type A 3% Brix and Type B 6% Brix 67
5.2 F-Test for Coolant A 3% Brix and Coolant B 6% Brix 67
5.3 T-Test for Coolant A 3% Brix and Coolant B 6% Brix 68
5.4 Surface Roughness Average for Coolant Type A 3% Brix and Type C 9% Brix 69
5.5 F-Test for Coolant A 3% Brix and Coolant C 9% Brix

5.6 T-Test for Coolant A 3% Brix and Coolant C 9% Brix

5.7 Surface Roughness Average for Coolant Type B 6% Brix and Type C 9% Brix

5.8 F-Test for Coolant A 6% Brix and Coolant C 9% Brix

5.9 T-Test: Two-Sample Assuming Unequal Variances

5.10 Surface Roughness Average for Best Value and Bad Value coolant

5.11 F-Test for Average for Best Value and Bad Value coolant

5.12 T-Test for Average for Best Value and Bad Value coolant

5.13 Data Recorded of Surface Roughness measurement use
 3 Brix Concentration

5.14 Data Recorded of Surface Roughness measurement use
 6 Brix Concentration

5.15 Data Recorded of Surface Roughness measurement use
 9 Brix Concentration
LIST OF FIGURES

2.1 Universal cylindrical grinder for external, internal and taper
grinding process 7
2.2 (a) Measuring surface roughness with a stylus. (b) Surface measuring
instrument (Surface Roughness Tester SJ – 301). 9
2.3 Measuring surface roughness with a stylus. 9
2.4 Profilometer Mitutoyo Surftest SJ-301. 9
2.5 Schematic figure checking roughness using stylus method. 10
2.6 Profile in surface appeared on the work piece 11
2.7 Checking profile on surface using stylus method. 14
2.8 Determination of R_a (m is the mean line) 14
2.9 Stainless Steel SUS 304 15
2.10 Refractometer 17
2.11 Reflection Systems 17
2.12 Relationship between refractometer reading and fluid concentration. 26
3.1 Flow chart of Project Methodology 30
3.2 Universal Cylindrical Grinder Machine 31
3.3 Flow chart of Machining Operation 32
3.4 Raw material 33
3.5 Horizontal Band saw Machine 39
3.6 Place and clamp the work piece used Horizontal Band Saw Machine 39
3.7 Clamp the work piece 40
3.8 Work piece after cut 40
3.9 Turning Lathe machine 41
3.10 Facing and Straight Turning process 42
3.11 Refractometer 42
3.12 Drops a coolant on the prism 43
3.13 Refractometer value level 3,6 and 9 brix coolant mixed with water 43
3.14 Pretech SYN 3000 Green 43
3.15 Switch for power on 44
3.16 The buttons pushed simultaneously
3.17 Main switch at the machine has to switch on
3.18 Power button on the control panel has to push ON
3.19 End stock which attach with diamond dresser
3.20 The diamond dresser move ahead close to the wheel
3.21 Auto-traverse dressing
3.22 Place the work piece into the chuck
3.23 Fasten the work piece on chuck properly
3.24 Coolant is flushing on the grinding wheel
3.25 Set up the correct spindle speed as parameter required
3.26 Set up correct traverse speed as parameter required
3.27 Set position of reversing dog for table traverse
3.28 Knob for locking the table for auto-traverse cycle
3.29 Set the in feed to zero aligns
3.30 Cycling the operation until meet the parameter
3.31 Normal position should be set after machining done
4.1 Point for taken measurement.
4.2 Graph of Surface Roughness measurement use 3 Brix Concentration
4.3 Graph of Surface Roughness measurement use 6 Brix Concentration
4.4 Graph of Surface Roughness measurement use 9 Brix Concentration
4.5 Graph of Surface Roughness comparison between 3 types of coolant in Surface Roughness (Best Value)
4.6 Graph of Surface Roughness comparison between 3 types of coolant in Surface Roughness (Bad Value)
4.7 Microstructure 3% Brix concentration
4.8 Microstructure 6% Brix concentration
4.9 Microstructure 9% Brix concentration
5.1 Small spark produced in 150 rpm of spindle speed.
5.2 Chatter vibrations in grinding
5.3 Roughness of wheel effect by dressing lead
5.4 Insufficient grinding fluid
5.5 Grinding fluid mixed with metal dust.
LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

FKP - Fakulti Kejuruteraan Pembuatan
Mn - Manganese
Ni - Nickel
PSM - Projek Sarjana Muda
R - Radius
RPM - Revolution per Minute
S - Sulphur
Si - Silicon
Syn - Synthetic
UTeM - Universiti Teknikal Malaysia Melaka
In - Inch
In/min - Inch per Minute
Mm - Millimeter
µm - Micron Meter
µ - Micro
% - percent
CHAPTER 1
INTRODUCTION

1.1 Background of Project

Cutting processes are among the most important of manufacturing operation. They are often necessary in order to impart the desired surface finish and dimensional accuracy to component, particularly those with complex shape that cannot be produced economically or properly by other techniques.

A large number of variables have significant influence on the mechanics of chip formation in cutting operations. Commonly observed chip types are continuous, built-up edge, discontinuous and segmented. Among important process variables are tool shape and material, cutting conditions such as speed, feed, and depth of cut, use of cutting fluids, and the characteristics of the machine tool, work holding device, fixturing, as well as the characteristics of the work piece material, parameters influenced by these variables are force and power consumption, tool wear, surface finish and integrity, temperature, and dimensional accuracy of the work piece. Mach inability of materials depends not only on their intrinsic properties, but also on proper selection and control of process variables.

The distinction between a finishing operation and other processes that affect the surface is that finishing processes are not intended significantly change the dimension of a part (William O. Fellers, 2001). Rather, this finishing operation is intended to achieve closer tolerances and provide protective coating. It is also able to improve the appearance of the part.
Surface finish is specified by giving the desired waviness, roughness, and lay of the desired surface. Waviness refers to the long-range undulations in the surface, not necessarily those left by the tool marks. Roughness refers to the finely spaced textured irregularities. Roughness is usually determined by the tool marks of the final operation.

The quality of machined surface is characterized by the accuracy of its manufacture with respect to the dimensions specified by the designer. Every machining operation leaves characteristic evidence on the machined surface. This evidence in the form of finely spaced micro irregularities left by the cutting tool. Each type of cutting tool leaves its own individual pattern which therefore can be identified. This pattern is known as surface finish or surface roughness.

Grinding is a machining process that employs an abrasive grinding wheel rotating at high speed to remove material from a softer material. In modern industry, grinding technology is highly developed according to particular product and process requirements. Modern machine tools may be inexpensive machines with a simple reciprocating table, or they may be expensive machines. Many grinding machines combine computer-controlled feed-drives and slide-way motions, allowing complex shapes to be manufactured free from manual intervention. Modern systems will usually incorporate algorithms to compensate for wheel and dressing tool wear processes. Programmable controls may also allow fast push-button set-up. Monitoring sensors and intelligent control introduce the potential for a degree of self-optimization (Gwidon Stachowiak, 2004).
1.2 Problem Statement

For the previous student only study about the surface roughness measurement and effect that involved from the surface roughness. The previous study state the coolant is the one of the effect that involved in surface roughness result. So for this study, student have to study about the effect of coolant to the surface roughness. Also, student will study about the concentration factor contribute on surface machining. The type coolant that will be used is Pretech Cool Syn 3000 Green. The material that used in this research is Stainless Steel SUS304. The content of coolant will be adding some water to get the maximum brix concentration. All other parameters are constant such as coolant which is Pretech Cool SYN 3000 Green with 3, 6 and 9 brix concentration. Also the result from the study can be used for guideline the industry that use high precision coolant.

1.3 Objectives

(a) To analyzed the contribution and effect the coolant to surface roughness texture on Stainless Steel SUS304.
(b) To analyzed the surface roughness factor of the finish product using Profilometer Surface Roughness Tester Mitutoyo SJ-301 at the University Metrology Laboratory.
(c) To study the effect use different types of coolant brix concentration
(d) To make comparison between 3 types of coolant on surface roughness value from analysis result.
1.4 Scope of Project

This project is about studying the effect of different brix concentration of coolant on surface roughness by using the cylindrical grinding machine. This process is done on the Universal Cylindrical Grinder OD-820H in Manufacturing Laboratory in Universiti Teknikal Malaysia Melaka. There are uses of coolant with 3 different brix concentrations. The coolant used in this research is Pretech Cool SYN 3000 Green.

The parameters that involve in this research are work head speed, depth of cut and traverse speed. Profilometer of Surface roughness Tester Mitutoyo SJ-301 will be used to measure and identify the contact of surface. This will determine the surface roughness of the material after completing the grinding operations. The factors that influence the surface roughness will be identified after the material have been machined. The material dimension is 28mm for the diameter and 100mm for the length.
CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Machine tools and cutting tools have advanced in great developments in the past few years. In the past few years ago, machining is a difficult task to be performed but now this task has become common place and have been simplified with more advanced technology that have been involved. Machining, the broad term used to describe removal of material from a work piece (Serope Kalpakjian, Steven R. Schmid, 2001).

Each process should be studied in order to understand the interrelationships of design parameters, such as dimensional accuracy, surface finish and integrity, and process parameters such as speed, feed, depth of cut, tool material and shape, and cutting fluids.

A variety of abrasive processes and machinery are available for surface, external, and internal grinding. The selection of abrasives and process variable in these operations must be controlled in order to obtain the desired surface and dimensional accuracy. Otherwise, damage to surfaces such as burning, heat checking, and harmful residual stresses may develop. Several finishing operations are available for debarring. Because contribute significantly to product cost, proper selection and implementation of finishing operations are important.
In written of (William O. Fellers, 2001), the result to breaking and cutting a piece of material depends on several factors:

(a) The properties of the material being cut.
(b) The properties of the cutting tool.
(c) The speed at which the material is cut.

Those factor giving then the result on the work piece such as geometric shape, dimension, appearance, and also surface integrity. Thus some parts that have been producing in machining would to have other finishing operations, such as grinding. This operation is important to obtain the desire final dimension and surface finish (Serope Kalpakjian, Steven R. Schmid, 2001).

In the grinding process, because of the undefined geometrical cutting edges, there is a large amount of heat caused by different mechanism of shear, friction and separation, which is only partially dissipated by the chips and the rest can lead to a considerable thermal strain and burning on the workpiece and also on the tools. The reduction of heat build-up and proper cooling during grinding are therefore of immense importance (Tawakoli T. et al, 2006).

2.2 Cylindrical Grinding Machine

Cylindrical grinding machine is one of the new machines that arrive in Manufacturing Laboratory in Universiti Teknikal Malaysia Melaka. The cylindrical grinding is used widely in engineering workshop to improve the surface finish of pre-machine and heat-treated components. The machine is able to produce a precise and an accurate dimension of the product with low cost method than others.

The machine that use in Machine Shop Laboratory is Universal Cylindrical Grinder Model S OD 820H with variable speed table and full CNC wheel head in feed manufactured by SHARP Precision Machine Tools. The machine has the capability to machine both of internal and external cylindrical grinding.
Cylindrical grinding machines resemble lathes since they are equipped with a headstock. Tailstock, table, and wheel head. The work piece is held either between centers or securely in a fixture mounted on the work head spindle. There two general classes of cylindrical grinding machine:

(a) Plain
(b) Universal

The general construction of a universal grinder is similar to that plain grinder of the same make, but it differs from the latter in having certain special features and auxiliary attachments. In more advanced of universal grinder the wheel can slide can be swivelled with relation to the travel of the table (Franklin D. Jones, 1964).

In universal grinder, both the work piece and the wheel axes can be moved and swivelled around a horizontal plane, permitting the grinding tapers and other shapes (Serope Kalpakjian, Steven R. Schmid, 2001). Centerless grinder are similar to cylindrical grinder but without centers. The work is supported on a fixed blade under pressure applied by the regulating wheel.

Recent cylindrical grinding machine can use in both operation either centerless-grinding or between-center grinding. Like machine produced by Studer Mikrosa BWF Kronos Series, the Kronos L dual which offers an innovative design which permits the combination of two processes; centerless grinding and grinding between