APPLICATION OF LEAST-SQUARES METHOD TO FORECAST THE RELIABILITY PROBLEM BASED ON THE WELL AND REJECTED ITEMS PRODUCED

NOOR HAFIZAH BINTI IBRAHIM

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronics Engineering (Industrial Electronics) With Honors.

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka

MEI 2008
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
BORANG PENGESAHAN STATUS LAPORAN
PROJEK SARJANA MUDA II

APPLICATION OF LEAST-SQUARES METHOD TO FORECAST
THE RELIABILITY PROBLEM BASED ON THE WELL AND
REJECTED ITEMS PRODUCED

Tajuk Projek : 2007/2008

Sesi Pengajian : 2007/2008

Saya NOOR HAFIZAH BINTI IBRAHIM
mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat
kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi
 pengajian tinggi.
4. Sila tandakan (✓) :

☐ SULIT* (Mengandungi maklumat yang berharga keselamatan atau
 kepentingan Malaysia seperti yang termaktub di dalam AKTA
 RAHSIA RASMI 1972)

☐ TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh
 organisasi/badan di mana penyelidikan dijalankan)

✓ TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS)

(COP DAN TANDATANGAN PENYELIA)

DR YOSZA B DASRIL
Pensyarah
Fakulti Ke Elektronik dan Ke Komputer (FKEK),
Universiti Teknikal Malaysia Melaka (UTeM),
Kanur Berkunci 1200,
Ayer Keroh, 75450 Melaka

Alamat Tetap : N0.1308, Jalan TBK 6/5,
Taman Bukit Kepayang,
70200, Seremban,
Negeri Sembilan.

Tarikh : 9 MEI 2008

© Universiti Teknikal Malaysia Melaka
"I hereby declare that this report is my own results of my own effort except for works that have been cited clearly in references"

Signature :
Author : Noor Hafizah binti Ibrahim
Date :
“I hereby declare that I have read this report and in my opinion this report is sufficient in term of the scope and quality for award of Bachelor of Electronics Engineering (Industrial Electronic) With Honours.”

Signature : ..
Supervisor’s Name : Dr. Yosza bin Dasril
Date : 09-05-2008
Thank you to my lovely parents that were gives me a support until I had successfully completed this PSM report.
ACKNOWLEDGEMENT

In the name of God, Most Gracious, Most Merciful. Praise to be Allah, the Lord of the worlds and Peace be upon the Master of the Apostles, his Family and Companions.

I would like to express my sincere gratitude to my supervisor’s, Dr Yosza bin Dasril for his exemplary guidance, monitoring and constant encouragement throughout the development of the project. Thank you for his knowledge that he tried to share, his kind and patient way of explaining me.

Dedication to my family’s especially to my parents for their support in this project. I wish to express my sincere gratitude and appreciation to all my friends for their helpful suggestions in developing this project. Thank you for their support and encouragement to me until I had completed this report.

Lastly, to all people who had helped me both directly and indirectly, I express gratitude and thank you.
This research is concerned to develop a software that can be used to solve the reliability problem. A reliability is concerned with random accuracies of undesirable events, or failures during the life of a physical system. In order to fulfill the objective of this research, we have used the Least-squared method and Matlab software as a tool to solve the problem. The data that we have collected from semiconductor company shown that they produce diode in range 1000000 to 1500000 units per day. Based on our observations, we found that about 0.2551 % units are rejected. Based on our developed software we can forecast or estimate the number of unreject and reject items.
ABSTRAK

TABLE OF CONTENT

TITLE i
DECLARATION FORM OF REPORT STATUS ii
DECLARATION iii
SUPERVISOR’S DECLARATION iv
DEDICATION v
AKNOWLEDGMENT vi
ABSTRACT vii
ABSTRAK viii
TABLE OF CONTENTS ix
LIST OF TABLE xii
LIST OF FIGURE xiii

CHAPTER 1 INTRODUCTION

1.1 PROJECT OVERVIEW 1
1.2 OBJECTIVE OF THE PROJECT 2
1.3 PROBLEM STATEMENT 2
1.4 SCOPE OF WORK 2
1.5 METHODOLOGY 3
1.6 THESIS OUTLINE 4
CHAPTER 2 LITERATURE REVIEW

2.0 INTRODUCTION 5
2.1 STATISTICS 8
2.2 PROBABILITY 8
2.3 QUALITY AND RELIABILITY 10
 2.3.1 RELIABILITY STATISTIC 11
 2.3.2 RELIABILITY DATA ANALYSIS 11
 2.3.3 RELIABILITY PROBLEM 12
 2.3.4 RELIABILITY ENGINEERING 12
 2.3.5 IMPORTANT OF RELIABILITY 13
2.4 REGRESSION ANALYSIS 15
 2.4.1 SIMPLE REGRESSION 15
 2.4.2 LINEAR REGRESSION AND NONLINEAR 16
 REGRESSION
 2.4.3 SIMPLE LINEAR REGRESSION ANALYSIS 17
 2.4.4 CURVE FITTING AND REGRESSION 18
2.5 LEAST SQUARES METHOD 18
2.6 MATHEMATICAL MODEL 20
 2.6.1 CLASSIFYING MATHEMATICAL MODELS 21

CHAPTER 3 RESEARCH METHODOLOGY

3.1 INTRODUCTION 22
3.2 METHODOLOGY 23
3.3 MATLAB SOFTWARE PROGRAMMING 26
 3.3.1 CATEGORY MATLAB WORK 28
CHAPTER 4 RESULTS AND ANALYSIS

4.1 SIMULATION DATA COLLECTION 29
 4.1.1 SIMULATION OF LINEAR REGRESSION 36
4.2 MATLAB SIMULATION 44
4.3 GRAPHICAL ANALYSIS 47

CHAPTER 5 CONCLUSION

5.1 CONCLUSION 49
5.2 FUTURE WORK 52

REFERENCES 53
APPENDIX 54
LIST OF TABLE

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Category MATLAB Work</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Data Collected</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage of item rejected</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Percentage of item produce</td>
<td>41</td>
</tr>
<tr>
<td>5.1</td>
<td>Forecast well items produce</td>
<td>50</td>
</tr>
<tr>
<td>5.2</td>
<td>Forecast item rejected</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>IN5333B Series</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Zener Voltage Regulator</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Linear Regression Graph</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Linear Regression on Y and on X</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology of Project</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Matlab Programming</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Appearance on Desktop</td>
<td>27</td>
</tr>
<tr>
<td>4.1(a)</td>
<td>The number of item produce</td>
<td>34</td>
</tr>
<tr>
<td>4.1(b)</td>
<td>The number of item rejected</td>
<td>34</td>
</tr>
<tr>
<td>4.2(a)</td>
<td>The probability of item rejected</td>
<td>35</td>
</tr>
<tr>
<td>4.2(b)</td>
<td>The % of item rejected</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>Graph Least-Square Fit</td>
<td>40</td>
</tr>
<tr>
<td>4.4(a)</td>
<td>Linear Regression for Probability item rejected</td>
<td>44</td>
</tr>
<tr>
<td>4.4(b)</td>
<td>Linear Regression for Probability item produces</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>Different degree of Correlation between Variables</td>
<td>48</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Matlab Coding</td>
<td>54</td>
</tr>
<tr>
<td>B</td>
<td>1N5333B Series Datasheet.</td>
<td>58</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 PROJECT OVERVIEW

Application of Least-Squares method to forecast the reliability problem based on the well and rejected items produced is one of the projects that will develop a mathematical model of the data from reliability problem electronics product or devices. This model will be use to predict the reliability problem of data.

This project will develop software by using the Matlab Programming. From the statistics of the data that has been collected, it will produce the graph. From the graph, it could find the mathematical model. This software will be useful to make easier the synthesis process and will give many advantages in the future.

The aspect that will cover in this project is including of the study the literature review, data collection and analysis, mathematical modeling, Matlab software programming and implement result. This project will apply the least square method and Regression Analysis.
1.2 OBJECTIVES OF THE PROJECT

In this project, there are an objective to be achieved. The objectives of this project are listed as belows:

a) This project is to apply the Least-Square Method to the data that has been collected from the factory.

b) This project is to forecast the reliability problem in electronics devices.

1.3 PROBLEMS STATEMENT

Nowadays, the calculation is very important to us especially for the factory that needed to calculate their reliability data. While doing the calculation, many error will occurred or possible happen, therefore in this project, we want to solve the problems by develop a new software by using the Matlab software programming. This software will be use to predict the reliability problem of data in the future. This new software will give the advantages to the company especially for the factory while doing the forecasting. This project will help the costumer to know whether the devices or product is in good quality or not.

1.4 SCOPE OF WORK

This project will focus the reliability problem in electronics devices. It will develop mathematical model from the data. From the statistic of data that had been collected from the factory, students need to analyze the data to fit the best curve on the data. Furthermore, scope of this project is to minimize the procedure error. In this project, Matlab software programming is used to analysis, to solve and to simulate the mathematical model. In this project, we modeled the data in such way we could find the linear model. In order to solve the model, we used the Least Square Method and apply the Regression Analysis.
1.5 METHODOLOGY

There have a right procedure to make sure that this project is successful and the objective is achieved. The methodology that include in this project is:

a) Synopsis of the project
 For this project, firstly need to understand and study the synopsis, objective and scope of the project based on the research from internet and the reference books.

b) Data collection
 Then, data was collected from the factory. Data of the device is collected daily for 30 day. From the amount, we can determine the probability. Then, from the result, reliability was calculated.

c) Analysis
 The data collection will analyze and it will be represented in the graph form. From the graph, we can determine the mean, variation and standard distribution point. Besides that, the Least Square Method is use to get the mathematical model.

d) Matlab Software Programming
 This project will develop by using the Matlab software programming especially Matlab simulation programming. It will apply the Least Square Method and get the mathematical model.

e) Implement result
 This project will produce the new software and mathematical model that use to predict the problem data of the device that collected from the factory. Complete report PSM.
1.6 THESIS OUTLINE

There have 5 chapter for this PSM report which have more explanation and easier to understand about this topic.

In this project, chapter 1 is introduction of the project. For the chapter 1 it will focus on the brief of overview regarding project including introduction, objectives of the project that have achieved, problem statement that need to solve, scope of the project and simple methodology.

Chapter 2 is about the explanation of the research and literature review. All of the facts and information which were found from the journals or other references will be compared to choose the most accurate and satisfy methods. The literature review and the software development of the project which uses is Matlab software programming. This chapter is also shown the theory and the concept that use to solve the project problem.

Chapter 3 is a methodology of the research. This chapter is defines and illustrates the steps that need to do in this project. All these methodology should be followed for a greater performance. In this chapter, it will consider the step or method that we use of this project.

Chapter 4 will covered the results and the discussion of the project. The new software that development on the reliability problem will occur and will make a analysis and testing the implements result.

Chapter 5 will include the conclusion of the PSM project and the future recommendations.
CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

For this project of Software development on reliability problem, zener diode is the product that was analytical. Type of zener diode that was analyzed is 1N5333B. Zener diode is a type of diode that permits current to flow in the forward direction like a normal diode, but also in the reverse direction if the voltage is larger than the breakdown voltage known as "Zener voltage".

Zener diode (1N5333B)

This is a complete series of 5 Watt Zener Diodes with tight limits and better operating characteristics that reflect the superior capabilities of silicon-oxide-passivated junctions. All this is in an axial-lead, transfer-molded plastic package that offers protection in all common environmental conditions 1N5333B Series Datasheet.
Features:

- Zener Voltage Range - 3.3 V to 200 V
- ESD Rating of Class 3 (>16 kV) per Human Body Model
- Surge Rating of up to 180 W @ 8.3 ms
- Maximum Limits Guaranteed on up to Six Electrical Parameters

Axial Lead Case 017AA

A = Assembly Location
1N53xxB = Device Number
YY = Year
WW = Work Week
* = Pb-Free Package

Figure 2.1: 1N5333B Series
From the interview, it notices that there have factors caused the product was rejected. Some of the reasons are:

- Voltage range of the product was not achieved. This product needs a voltage range 3.3V to 200V.
- Temperature of the diode was not qualified that is average range 65°C to 200°C.
- Maximum lead temperature for soldering purpose is over than 260°C from the case for 10 seconds
- Characteristic of the operation for the product was not achieved for example forward voltages not 1.2V max.
2.1 STATISTICS

A statistic is the result of applying a function to a set of data. More formally, statistical theory defines a statistic as a function of a sample where the function itself is independent of the sample's distribution. Statistics is also a mathematical science pertaining to the collection, analysis, interpretation or explanation, and presentation of data. Statistical methods can be used to summarize or describe a collection of data, this is called descriptive statistics. Function of descriptive statistics is used to describe the basic features of the data in a study. They provide simple summaries about the sample and the measures.

2.2 PROBABILITY

Probability is a number between 0-1 that states the proportion of times we expect a certain thing to happen, such as the proportion of product that pass a test. A probability measure $P [A]$ is a function that assigns a number between 0 and 1 to every event A in a sample space. The assigned probabilities conform to the three axioms presented. Sample space, event and outcome is a probability terms for the set theory concepts of universal set and element David & Roy, (2005).

Average is value of a collection of numerical observation is a statistic of the collection, a single number that describes entire collection. The one that used the most are the mean, median, mode, variance and standard deviation.
• **Mean**
Mean is the value of a set number is perhaps the most familiar. Mean value will get by adding up all the number in the collection and dividing by the number of them in the sum David & Roy, (2005). The mean is often along with the standard deviation. The mean describes the central location of the data, and the standard deviation describes the spread.

• **Median and Mode**
In probability theory and statistics, a median is described as the number separating the higher half of a sample, a population, or a probability distribution, from the lower half. The median of a finite list of numbers can be found by arranging all the observations from lowest value to highest value and picking the middle one David & Roy, (2005). Median is the number of the middle of the set of number. In statistics, the mode is the value that occurs the most frequently in a data set or a probability distribution. Mode is common number in collection of observations.

• **Variance**
In probability theory and statistics, the variance of a random variable, probability distribution, or sample is one measure of statistical dispersion, averaging the squared distance of its possible values from the expected value (mean).

• **Standard Deviation**
In probability and statistics, the standard deviation of a probability distribution, random variable, or population or multiset of values is a measure of the spread of its values. The standard deviation is usually denoted with the letter \(\sigma \). It is defined as the square root of the variance means the addition of all the values subtracted by the mean, over the amount of values \(n \).
2.3 QUALITY AND RELIABILITY

In semiconductor marketplace, two important elements for the success of a company are its quality and reliability systems. Both of them are interrelated. Reliability being the quality extended over the expected life of the product. For any manufacturer, all the products must meet or exceed the basic quality and reliability standards.

Quality may be defined as reduction of variability around a target so that conformance to customer requirements and expectations can be achieved in a cost effective way Quality and Reliability Handbook, (2005). Besides that, quality is the probability that a device for example equipment and parts will have performance characteristics within specified limits.

Reliability is defined as quality in time and environment such as temperature, voltage and etc. Besides that, the reliability is also the probability that a semiconductor device, which initially has satisfactory performance and will continue to perform its intended function for a given time under actual usage environments Quality and Reliability Handbook, (2005).