DESIGN OF MR FLUID BASE
BRAKE SYSTEM FOR MOTORCYCLE

AZMIR BIN MAT ZAIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
DESIGN OF MR FLUID BASE BRAKE SYSTEM
FOR MOTORCYCLE

AZMIR BIN MAT ZAIN

This report is submitted in partial fulfillment of the requirement for the
Bachelor of Mechanical Engineering (Automotive)
Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka (UteM)

7th APRIL 2010

I/We admit that have read this report and in my/our opinion, this report is enough in terms of scope and quality to bestowal Bachelor of Mechanical Engineering (Automotive)

Signature :
Supervisor I :
Date :
Signature :
Supervisor II :
Date :
DECLARATION

I hereby declare that this project report entitled

DESIGN OF MR FLUID
BASE BRAKE SYSTEM FOR MOTORCYCLE

Is written by me and is my own effort and that no part has been plagiarized without citations.

SIGNATURE:

NAME OF WRITER: AZMIR BIN MAT ZAIN

DATE: 7th April 2010
DEDICATION

Special appreciation dedicated to my parents, Mr. Mat Zain bin Hamid and Mrs. Mariam binti Ahamad for all their support throughout this semester. Also, thousands of thanks to my supervisor, Mr. Faizul Akmar Abdul Kadir for giving me support and motivation while implementing this project. All the support and encouragement given has become one of the roots for me in achieving my success.
ACKNOWLEDGEMENT

In general, I hereby would like to express my appreciation to those involved either directly or indirectly in accomplishing my PSM (2009/10). This project would not have been possible without the support of many peoples. Mr. Faizul Akmar Abdul Kadir, my supervisor, deserves a special mention because he has given me all the support and encouragement throughout this project. And finally, thank goes to my parents, and numerous friends who have endured this long process with me and always offer valuable support and love all this while. May all the support and knowledge given enable me to gain more significant experience and precious understanding on engineering field in the future.
ABSTRAK

ABSTRACT

Conventional hydraulic brake (CHB) systems used in automotive industry have several limitations and disadvantages such as the response delay, wear of braking pad, requirement for auxiliary components (e.g. hydraulic pump, transfer pipes and brake fluid reservoir) and increased overall weight due to the auxiliary components. In this project, the development of a novel electromechanical brake (EMB) for automotive applications is presented. Such brake employs mechanical components as well as electrical components, resulting in more reliable and faster braking actuation. The proposed electromagnetic brake is a magnetorheological (MR) brake. The MR brake consists of multiple rotating disks immersed into an MR fluid and an enclosed electromagnet. When current is applied to the electromagnet coil, the MR fluid solidifies as its yield stress varies as a function of the magnetic field applied by the electromagnet. This controllable yield stress produces shear friction on the rotating disks, generating the braking torque. This type of braking system has the following advantages: faster response, easy implementation of a new controller or existing controllers (e.g. ABS, VSC, EPB, etc.), less maintenance requirements since there is no material wear and lighter overall weight since it does not require the auxiliary components used in CHBs. The design process was started with an analytical model of the proposed MRB. Then, the MRB was designed with a focus on concept of BMX bicycle steering front and rear system, additional disc attachment, working surface area, MR fluid selection and applied current. Disadvantage of MR brake is the brake torque of MR brake produced is not enough to generate the brake torque of motorcycle. Therefore, an improved MR brake will be designed with an increased number of discs and value of current applied and modified the outer and inner radius of disc.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Project Background</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.2 Objective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.3 Problem Statement</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.4 Scope</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 2 LITERATURE REVIEW

2.1 What means by MR Fluid (magnetorheological fluid)?
 2.1.1 How it works
 2.1.2 Material behavior
 2.1.3 Particle Sedimentation
 2.1.4 Common MR fluid surfactants
 2.1.5 Modes of operation and applications
 2.1.6 Limitations

2.2 Disc Brake

2.3 Motorcycle Dynamics
 2.3.1 Required Braking Torque Calculation

2.4 MR Fluid

2.5 MR Fluid Brake (Brake by Wire) Concept
 2.5.1 MR actuator
 2.5.2 BMX bicycle steering concept
 2.5.3 MR Brake Geometry with an Annular Gap Concept

CHAPTER 3 METHODOLOGY

3.1 Literature Review
3.2 Problem Statement 28

3.3 MR Brake Design for Front Tire 29

3.3.1 Design of MR Brake System Base on Second Concept 30

3.3.2 Design of MR Brake System Base on First Concept 33

3.3.3 Applied Current Density 34

3.3.4 Additional Disc Attachment 36

3.3.5 Working Surface Area 37

3.3.6 MR Fluid Selection 37

3.4 Result and Data Analysis 39

3.5 Discussion 39

CHAPTER 4 RESULT 40

4.1 MR Brake Simulations (ABS Model) 40

4.1.1 Equation of Motion-ABS Modeling 41

4.1.2 MR Brake (ABS Model) Simulation Result 44

4.1.3 Brake Torque Required for MR Brake 46

CHAPTER 5 DISCUSSION 49

5.1 Discussion 49
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Condition of MR fluid</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Direction of magnetic flux in MR fluid</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Flow mode direction of magnetic flux</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Shear Mode direction of magnetic flux</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Squeeze-Flow Mode direction of magnetic flux</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>A mountain bike disc brake</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>A cross-drilled disc on a modern motorcycle</td>
<td>13</td>
</tr>
<tr>
<td>2.8</td>
<td>Free body diagram of a wheel</td>
<td>14</td>
</tr>
<tr>
<td>2.9</td>
<td>Friction coefficient versus slip ratio for different road surfaces</td>
<td>16</td>
</tr>
<tr>
<td>2.10</td>
<td>Basic configuration of the MR brake</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>The linear potentiometer</td>
<td>21</td>
</tr>
<tr>
<td>2.12</td>
<td>Side view of the position- feedback MR actuator</td>
<td>21</td>
</tr>
<tr>
<td>2.13</td>
<td>Rotary plate under shear mode</td>
<td>22</td>
</tr>
<tr>
<td>2.14</td>
<td>BMX bicycle steering (front brake for first concept)</td>
<td>23</td>
</tr>
<tr>
<td>2.15</td>
<td>Three series of plate (rear brake for second concept)</td>
<td>23</td>
</tr>
<tr>
<td>2.16</td>
<td>Movement of the middle plate</td>
<td>24</td>
</tr>
</tbody>
</table>
2.17 Measurement of the distance between upper plate and lower plate
2.18 MR brake geometry with annular fluid gap and plot of anticipated performance.
3.1 Flow Chart for Methodology
3.2 Functional principle of MRF brake
3.3 Front view of first design MR brake actuator
3.4 Top view of MR brake actuator design
3.5 Isometric view of MR brake actuator design
3.6 Flow of the MR brake system
3.7 Second design of MR brake actuator
3.8 Wire configuration in a coil
3.9 Surface plots with one (top) and two (bottom) rotating shear disks attached to the shaft
4.1 Illustrations on the wheel during braking condition
4.2 Schematic of no braking condition
4.3 Schematic of braking condition
4.4 MR Brake (ABS model) simulation diagram
4.5 Graph longitudinal slip versus time(s) 44
4.6 Graph stopping distance (m) versus time(s) 45
4.7 Graph brake torque (Nm) versus time(s) (sec) 45
4.8 Brake torque versus Number of surface, N 47
4.9 Brake torque, T_H versus different radius of disc, (m) 47
4.10 Braking torque, T_b (Nm) vs. applied currents (A) 48
LIST OF SYMBOLS

\[\begin{align*}
\tau &= \text{Shear Stress (Pa)} \\
\tau_y &= \text{Yield Stress (Pa)} \\
\tau_y(H) &= \text{Dynamic yield stress (Pa)} \\
\lambda &= \text{Dynamic Range} \\
H &= \text{Magnetic Field Intensity} \\
\eta &= \text{Newtonian Viscosity} \\
\frac{dv}{dz} &= \text{Velocity gradient in the z-direction} \\
\omega &= \text{Angular velocity (rad/sec)} \\
h &= \text{Fluid gap thickness} \\
r &= \text{Radius of rotary disc (m)} \\
T &= \text{Resistance torque (Nm)} \\
R_o &= \text{Outer radius (m)} \\
R_i &= \text{Inner Radius (m)} \\
d &= \text{diameter for rotary disc (m)} \\
W_m &= \text{Maximum work (Watt)} \\
g &= \text{gap between casing and disc (mm)} \\
L &= \text{Length (m)}
\end{align*} \]
\(V \) = Fluid volume \((m^3) \)

\(S \) = Relative pole velocity

\(A \) = Shear (pole) area \((m^2) \)

\(r_z \) = Outer radius of disc (m)

\(r_w \) = Inner radius of disc (m)

\(k \) = Constant parameter of magnetic field for MR fluid \((Pa \cdot m/A) \)

\(\beta \) = Constant parameter of yield stress for MR fluid

\(\alpha \) = Proportional gain

\(i \) = Current (Amp)

\(n \) = Number of surfaces of brake disk in contact with MR fluid

\(\eta \dot{\gamma} \) = Shear strain rate with the \(\eta \), the constant plastic viscosity which is considered equal to the no-field viscosity of the fluid

\(\frac{T_{mr}}{T_b} \) = Torque of MR brake or brake \((Nm) \)

\(\mu = f(s) \) = Coefficient of friction in function of longitudinal slip

\(\mu \) = Coefficient of friction

\(S \) = Longitudinal slip

\(\alpha_w \) = Wheel angular acceleration \((rad/sec^2) \)

\(I_w \) = Wheel moment of inertia \((kgm^2) \)

\(T_w \) = Wheel torque \((Nm) \)

\(T_b \) = Brake torque \((Nm) \)

\(T_t \) = Tractive torque \((Nm) \)
\[\begin{align*}
R &= \text{Tire radius (m)} \\
M_v &= \text{Vehicle mass (kg)} \\
a_v &= \text{Longitudinal acceleration (m/s}^2) \\
V_w &= \text{Longitudinal wheel speed (m/s)} \\
V_v &= \text{Longitudinal vehicle speed (m/s)} \\
W_w &= \text{Wheel angular speed (rad/sec)} \\
F_f &= \text{Road resistance (N)} \\
T_\mu &= \text{Viscous torque (Nm)} \\
T_H &= \text{Torque generate due to applied field (Nm)}
\end{align*} \]
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Comparison in between MR brake system and Conventional hydraulic brake system</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Required braking torque for different vehicles</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Current densities for coils of wires with different sizes</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Properties of MRF-132DG® and MRF-241ES®</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>MR Brake simulink parameter</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Torque generated under various magnetic field intensities</td>
<td>48</td>
</tr>
<tr>
<td>5.1</td>
<td>Motorcycle Battery Range</td>
<td>50</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Project background

The topic of “x-by-wire” is focus to motorcycle industries due to its potential to improve automotive performance, safety and cost. The “x” in x-by-wire is a technological wildcard for automotive systems such as steering and braking, and means replacing conventional mechanical components by electrical ones. The project is to develop brake-by-wire system using an electromechanical brake (EMB) that employs magnetorheological(MR) fluid.

A magnetorheological fluid (MR fluid) is a type of smart fluid. It is a suspension of micrometer-sized magnetic particles in a carrier fluid, usually a type of oil. In chemistry, a suspension is a heterogeneous fluid containing solid particles that are sufficiently large for sedimentation. Usually they must be larger than 1 micrometer. When subjected to a magnetic field, the fluid greatly increases its apparent viscosity, to the point of becoming a viscoelastic solid. Importantly, the yield stress of the fluid when in its active ("on") state can be controlled very accurately by varying the magnetic field intensity. The upshot of which is that the fluid's ability to transmit force can be controlled with an electromagnet, which gives rise to its many possible control-based applications.

MR fluids have attracted considerable interest in both academic and industrial fields. A variety of valuable outcomes have been used in various products, which
contribute tremendously to industry developments and to human daily lives. The most successful applications of MR devices are dampers or shock absorbers for vehicles and other applications requiring vibration control. For example, damper suspension equipment is used in a vehicle seat control system to compromise shock vibration control in response to the levels of shock and road vibration. Another innovative commercial application for an MR fluid is in the polishing of optical lenses. Compared to conventional polishing, MR fluid works as a compliant polishing lap, with which the shape and stiffness of the polisher can be magnetically manipulated and controlled in real time.

<table>
<thead>
<tr>
<th>MR brake system</th>
<th>Hydraulic brake system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low power requirement (several ampere)</td>
<td>High energy consumptions</td>
</tr>
<tr>
<td>Simple design and construction</td>
<td>Bulky design</td>
</tr>
<tr>
<td>Hydraulic free: no hydraulic line and need less space requirement</td>
<td>Problem with leakage in hydraulic line</td>
</tr>
<tr>
<td>No metal-with metal friction</td>
<td>Brake noise due to metal-with-metal friction</td>
</tr>
<tr>
<td>No brake pad needed</td>
<td>Brake pad need to be replaced periodically</td>
</tr>
<tr>
<td>Fast response (0.02second)</td>
<td>Response delay due to pressure build up</td>
</tr>
<tr>
<td>Easy to control (used for brake-by-wire system)</td>
<td>Require auxiliary components such as hydraulic pump, brake valve and fluid reservoir</td>
</tr>
</tbody>
</table>

Table 1.1: Comparison in between MR brake system and conventional hydraulic brake system
While, disc brake is a device for slowing or stopping the rotating wheel. A brake disc (or rotor in U.S. English), usually made of cast iron or ceramic composites (including carbon, kevlar and silica), is connected to the wheel and/or the axle. To stop the wheel, friction material in the form of brake pads (mounted on a device called a brake caliper) is forced mechanically, hydraulically, pneumatically or electromagnetically against both sides of the disc. Friction causes the disc and attached wheel to slow or stop.

There are many advantages of using pure electronically controlled brake systems. The properties and behavior of the brake will be easy to adapt by simply changing the parameters and electrical outputs instead of adjusting mechanical components. So, this project is actually study base on MR fluid brake system (brake by wire) which has the potential to improve the braking time required to stop the motorcycle with using only small amount of input current.

1.2 Objective

Design of MR fluid base brake module to be used on motorcycle

1.3 Problem statement

Brake-by-wire is state of the art brake design. Research done shows that MR fluid base brake system has the potential to improve braking time required to stop the vehicle with using only small amount of input current. The brake system is currently tested on rig and this study is intended to incorporate the brake to a motorcycle.
1.4 Scope

There is a few scope which need complied in undertaking the project this namely;

- Study MR brake system
- Design/suggest MR brake module for motorcycle
- Identify the size of motorcycle engine
- Identify how to improve the brake torque of motorcycle