UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EFFECTIVE IMPLEMENTATION OF PROCESS CAPABILITY INDEX C_{pk} IN MINIMIZING REJECT RATE FOR BATCH PRODUCTION

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Management) with Honours.

by

AZWARNI BINTI MOHAMAD

FACULTY OF MANUFACTURING ENGINEERING

2009
JUDUL: EFFECTIVE IMPLEMENTATION OF PROCESS CAPABILITY INDEX Cpk IN MINIMIZING REJECT RATE FOR BATCH PRODUCTION

SESI PENGAJIAN: Semester 2 (2008/2009)

Saya AZWARNI BINTI MOHAMAD mengaku membentuk laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
4. *Sila tandakan (√)

☐ SULIT (Mengandungi maklumat yang berdaaran keselaman atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

(TANDATANGAN PENULIS)

(TANDATANGAN PENYELIA)

Alamat Tetap:
Lot 102 Kg. Gunung 16450
Ketereh, Kota Bharu, Kelantan
Darul Naim

Cop Rasmii:
AB RAHMAN BIN MAHMOOD
Pensyarah Kanan
Fakulti Kajian Kanan
Universiti Teknikal Malaysia Melaka

Tarikh: 11/05/2009

* Jika laporan PSM ini SULIT atau TERHAD, sila lampaikan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref): 10 Mei 2009
Rujukan Tuan (Your Ref):

Pustakawan
Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM)
Taman Tasik Utama, Hang Tuah Jaya,
Ayer Keroh, 75450, Melaka

Saudara,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD
- LAPORAN PSM SARJANA MUDA KEJURUTERAAN PEMBUATAN (PENGURUSAN PEMBUATAN): AZWANI BINTI MOHAMAD
TAJUK: EFFECTIVE IMPLEMENTATION OF PROCESS CAPABILITY INDEX C_{PK} IN MINIMIZING REJECT RATE FOR BATCH PRODUCTION

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk “EFFECTIVE IMPLEMENTATION OF PROCESS CAPABILITY INDEX C_{PK} IN MINIMIZING REJECT RATE FOR BATCH PRODUCTION” mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

“BERKHIDMAT UNTUK NEGARA KERANA ALLAH”

Yang benar,

..
EN.AB.RAHMAN BIN MAHMOOD
Pensyarah,
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka (UTeM)
Karung berkunci 1200, Ayer Keroh,
75450, Melaka
06-2332546
DECLARATION

I hereby, declared this report entitled “Effective Implementation of Process Capability Index C_{pk} in Minimizing Reject Rate for Batch Production” is the results of my own research except as cited in references.

Signature : ………………………………………
Author’s Name : …AZWARNI BINTI MOHAMAD…
Date : ………………………………………
APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Management) with Honours. The member of the supervisory committee is as follow:

..
(En.Ab.Rahman Bin Mahmood)
Process Capability Index (C\text{pk}) has been used at some manufacturing companies to enable them to exactly monitor and getting feedback from process capability of their production department. This report includes the effective implementation of Process Capability Index (C\text{pk}) in minimizing reject rate for batch production. Hicom Engineering Sdn Bhd, which located in Shah Alam, Selangor was selected for this project. This project also covered the present application of process Statistical Process Control (SPC) that applied at Hicom Engineering Sdn Bhd. SPC is used for data-gathering and to investigate problem the trends over time for the automotive part in the production line of this company. This project is also aimed to design and recommend new software for calculating C\text{pk} called Operator Friendly Software (OFS). This software is designed for evaluation of one aspect of product quality which is process capability that can be used easily by production and quality control operators in order to minimize the reject rate in the line production. The developed software was not tested to check its effectiveness due to time constraint. However, the initial feedback obtained from the staff through the survey showed it is potentially effective because the time taken to set the result is very shorter compared to present practice.
ABSTRAK

DEDICATION

For My beloved family and friends
ACKNOWLEDGEMENT

I would first like to thank for my official supervisor Mr Abdul Rahman Bin Mahmood for his constant guidance, motivation and support. He will always be a role model for me and a source of inspiration. Special thanks to all staff at of Hicom Engineering Sdn Bhd especially to Mr Joizuddin Bin Omar who have given many information and guide to me. I appreciate the help of all of those individuals at who had discussions with me about the applicability of my project to their company.

I also appreciate the sharing of knowledge and friendship I have developed with the students in completed this project. I also want to thank Prof. Madya Dr Adi Saptari as the head of Manufacturing Engineering Faculty and others lecturers who give help whether directly or not. Finally, I want to thank my family and friends for their help and encouragement in completing this project.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Abstrak</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Content</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>x</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 Background

1.1.1 History of Process Capability Index (Cpk)

1.1.2 The Important of Project

1.1.3 Company Background

1.2 Problem Statement

1.3 Objective

1.4 Scope

2. LITERATURE REVIEW

2.1 Introduction of Quality Concept

2.2 The Evolution of Quality

2.2.1 Inspection

2.2.2 Quality Control (QC)

2.2.3 Total Quality Management (TQM)

2.2.4 Statistical Process Control (SPC)
3. METHODOLOGY

3.1 Planning of the Project 32
3.1.1 Selection of Product for Research 34
3.1.2 Observation of Presentation Quality Control System (QC) 34
3.1.3 Identification of Problems 34
3.1.4 Collection of Theories Concept and Ideas 34
3.1.5 Designing and Introduction of a New System 35
3.1.6 Data Collection 35
3.1.7 Implementation and Verification of Effectiveness of the New System 35
3.1.8 Data Analysis 36
3.1.9 Conclusion and Recommendations 36
3.2 Gantt Chart 36
4. DATA ANALYSIS, RESULT AND DISCUSSION

4.1 Introduction 37
4.2 Data Recording on Brake Disc Specification 38
4.3 Data Collection 40
4.4 Data Analysis 42
4.4.1 Process Capability Study Steps 42
4.4.2 Potential Causes of High Rejection Rate 44
4.4.3 Types of Defect 44
4.4.4 Process Capability Analysis from Control Charts 44
4.4.4.1 Central Tendency 45
4.4.4.2 Variability 45
4.4.4.3 Control Chart Interpretation 45
4.4.5 Process Capability Analysis from Process Capability Index (C(pk)) 47
4.4.5.1 Design and Introduction of Operator Friendly System (OFS) 47
4.56 Results 48
4.5.1 Survey of Implementation of Operator Friendly Software (OFS) 55
4.6 Discussion 57
4.6.1 Interpretation of C(pk) 58
4.6.2 Quality Improvement using Operator Friendly System (OFS) 59

5. CONCLUSION AND RECOMMENDATION

5.1 Conclusion 62
5.2 Recommendation 63
5.3 Future Scope 64

REFERENCES 65
LIST OF TABLES

2.1 Definitions of Quality 8
2.2 Process Capability Improvement 26

4.1 Data Measurement for Dimension of Brake Disc (Section 1) 41
4.2 Time Duration during Calculated C_{pk} 56
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Basic Function of SPC</td>
</tr>
<tr>
<td>2.2</td>
<td>Control Limits are Based on the Sampling Distribution</td>
</tr>
<tr>
<td>2.3</td>
<td>Calculation in X Bar and R Charts</td>
</tr>
<tr>
<td>2.4</td>
<td>Example of Control Chart</td>
</tr>
<tr>
<td>2.5</td>
<td>Example of Check Sheet</td>
</tr>
<tr>
<td>2.6</td>
<td>Case I: Process Variability just Matches Specification</td>
</tr>
<tr>
<td>2.7</td>
<td>Case II: Process Variability Well within Specifications</td>
</tr>
<tr>
<td>2.8</td>
<td>Case III: Process Variability Exceeds Specifications</td>
</tr>
<tr>
<td>2.9</td>
<td>Centered Process Width</td>
</tr>
<tr>
<td>2.10</td>
<td>Off-Center Process Width</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of the Project</td>
</tr>
<tr>
<td>4.1</td>
<td>Models of Brake Disc Product</td>
</tr>
<tr>
<td>4.2</td>
<td>Dimensions Specification of Brake Disc</td>
</tr>
<tr>
<td>4.3</td>
<td>Example of X Bar and R Chart</td>
</tr>
<tr>
<td>4.4</td>
<td>Cpk Chart for Dimension of Brake Disc (Section 1)</td>
</tr>
<tr>
<td>4.5</td>
<td>Cpk Chart for Dimension of Brake Disc (Section 2)</td>
</tr>
<tr>
<td>4.6</td>
<td>Cpk Chart for Dimension of Brake Disc (Section 3)</td>
</tr>
<tr>
<td>4.7</td>
<td>Cpk Chart for Dimension of Brake Disc (Section 4)</td>
</tr>
<tr>
<td>4.8</td>
<td>Cpk Chart for Dimension of Brake Disc (Section 5)</td>
</tr>
<tr>
<td>4.9</td>
<td>Cpk Chart for Dimension of Brake Disc (Section 6)</td>
</tr>
<tr>
<td>4.10</td>
<td>Cpk Chart for Dimension of Brake Disc (Section 7)</td>
</tr>
<tr>
<td>4.11</td>
<td>Graph Average Time for Manually and OFS</td>
</tr>
<tr>
<td>4.12</td>
<td>Sample of Present Inspection Sheet</td>
</tr>
<tr>
<td>4.13</td>
<td>Sample of New Inspection Sheet (OFS)</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>Potential Process Capability Index</td>
</tr>
<tr>
<td>C_{pk}</td>
<td>Process Capability Index</td>
</tr>
<tr>
<td>OFS</td>
<td>Operator Friendly Software</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>SPC</td>
<td>Statistical Process Control</td>
</tr>
<tr>
<td>SQC</td>
<td>Statistical Quality Control</td>
</tr>
<tr>
<td>TQC</td>
<td>Total Quality Control</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

This section included the introduction of Process Capability Index (C_{pk}) and identification of problem statement, objective and scope.

1.1 Background

1.1.1 History of Process Capability Index (C_{pk})

Process Capability Index has been used in manufacturing industry as decision making tools and to provide quantitative measures on process potential and performance. Process Capability Index is first introduced by Juran, the values of the index is estimated from a sample and should be qualified. Qualification of an estimate is provided in a form of a confidence interval for the estimate. In process improvement efforts, the Process Capability Index or Process Capability Ratio is a statistical measure of process capability. Specifically on the ability of a process to produce output within specification limits. The concept of process capability only holds meaning for processes that are in a state of statistical control.

The formula for this index is easy to understand and straightforward to apply. The sample data must be collected first in order to calculate this index. If a process is not centered, a slightly different measure is used to compute its capability. This ratio is represented by the symbol C_{pk}.
The Process Capability Index:

1. Considers only the spread of the characteristic in relation to specification limits
2. Assumes two-sided specification limits

The product can be bad if the mean is not set appropriately. It is computed by finding the difference between each of the specification limits and the mean, identifying the smaller difference, and dividing that difference by three standard deviations of the process. The process performance index takes account of the mean (μ) and is defined as:

\[C_{pk} = \min \left(\frac{USL - \mu}{3\sigma} \text{ or } \frac{\mu - LSL}{3\sigma} \right) \]

The process performance index can also accommodate one sided specification limits

1. For upper specification limit:

 \[Upper \ specification - Process \ mean \]
 \[3\sigma \]

 \[C_{pk} = \frac{USL - \mu}{3\sigma} \]

2. For lower specification limit:

 \[Process \ means - Lower \ specification \]
 \[3\sigma \]

 \[C_{pk} = \frac{\mu - LSL}{3\sigma} \]
Process Capability Index is constructed to express more desirable capability with increasingly higher values. The higher of C_{pk} value, the more capable the process is in meeting the customer requirement. A good target value for C_{pk} is 1.33, a more desirable C_{pk} is 2.00 and an excellent C_{pk} value is 5.00 or greater.

1.1.2 The Importance of Project

The important of this project are:

1. To know whether the process is stable or not.
2. To identify the main factor that causes the problem in batch production.
3. To illustrate the use of process capability analysis in a production of the product.
4. To take an action to solve the problem in production and automatically can improve the quality of product.

1.1.3 Company Background

Hicom Engineering Sdn Bhd is selected as observation for this research. This company is a subsidiary of Hicom Holding Berhad, a member of DRB-Hicom Group of Companies, offering state-of-the-art manufacturing capabilities to their customers. Hicom Engineering Sdn Bhd manufactures machine precision castings and assembles components for automotive and general engineering purposes. This company is located in Shah Alam, Selangor, Hicom Engineering Sdn Bhd began its commercial operation in 1991.
As one of Malaysia’s leading manufacturers of cast-iron automotive components, Hicom Engineering Sdn Bhd have a strong commitment to constantly improve the quality of their products. The ISO/TS 16949 certification has only enhanced their commitment. Hicom Engineering Sdn Bhd utilizes the latest technological advances in support of their commitment to continuous improvement and provides the highest quality castings.

1.2 Problem Statement

Process Capability Index (C_{pk}) is being used in manufacturing industry. It is employed to provide an indication of the variability associated with a process and how a process has conformed to its specification. However, normally evaluation of Process Capability Index (C_{pk}) is not continuously implemented in the production. It is only used during test cut when approving a new product or after major repair was done to any section of production line.

In Hicom Engineering Sdn Bhd, as other companies’ normal production standard, reject parts do occurs in their batch production. The reject parts are normally identified at the end of production line and this is too late to make any rectification to the process setting. This part reject occurs because of some factors such as the material used, in-line measurement, machine problem, and personnel involved in producing the parts. Ultimately, this Process Capability Index (C_{pk}) concept will be used to tremendously minimize this reject rate by obtaining early detection of the process capability.
1.3 Objective

1. To study the present application of process Statistical Process Control (SPC) and apply the implementation of Process Capability Index (C_{pk}) at Hicom Engineering Sdn Bhd.

2. To design and recommend Operator Friendly Software (OFS) for evaluation of product quality, which is the process capability, that can be used easily by production and quality control operators.

3. To minimize reject rate and improve the quality of product for batch production in Hicom Engineering Sdn Bhd using C_{pk} as tool.

1.4 Scope

The scope of this project is to study the present application of Statistical Process Control (SPC) and apply the implementation of Process Capability Index (C_{pk}) at Hicom Engineering Sdn Bhd. It uses in data-gathering and to investigate the problem trends over time for the automotive part in the production line of this company. This project will merely focus on batch production of Brake Disc production line. A batch production is a manufacturing method where products are produced in batches, as opposed to a continuous production process, or a one-off production. The primary characteristic of batch production is that all components are completed at a workstation before they move to the next one. In this project, a new Operator Friendly Software (OFS) using the Microsoft Excel Software will be designed and recommended for evaluating product quality that can be used easily by production and quality control operators.
CHAPTER 2
LITERATURE REVIEW

This chapter covers the literature review in the field of Process Capability Index that is gathered from some of resources such as journals, articles and books. From this finding, all the theory concepts and ideas relate to this project are gathered and summarizes in this chapter.

2.1 Introduction of Quality Concept

Quality is referred to the ability of a product to consistently meet or exceed customer requirements or expectations. Quality plays an important role in manufacturing organizations in gaining competitive advantage. Today’s consumer markets experience an ever increasing demand for better quality products. It is widely accepted that the quality of a product is generally thought of as the ability to fulfill or conform to customer needs.

Quality can be classified into three types such as quality of design, quality of conformance, and quality of performance. The quality of design means that the product has been designed to successfully fill a consumer need, real or perceived and for the quality of conformance is conformance to requirements that refers to the manufacture of the product or the provision of the service that meets the specific requirements set by the consumer. Meanwhile, the quality of performance means that the product or service performs its intended function as identified by the consumer (Summers, 2000).
Quality has been defined differently by different people. From these definitions, it can be seen that the emphasis of quality has been broadened to focus on customers’ needs. Now, it is quite common for organizations to publicize their slogans such as “Customer First” and some have even established customer care units just to provide the voice of customer. Actually, the customers want the solutions for their needs and not only quality product.

According to Dr. Joseph M. Juran, the costs of quality can be classified into four categories which are:

1. **Internal Failure Costs**: these costs are defined by Dr. Juran as the costs incurred with defective products, inclusive of scrap, rework, and downtime.

2. **External Failure Costs**: these costs are incurred after the product has left the company and is received by the customer, inclusive of warranty costs, complaints, returned products, and rectification of the products.

3. **Appraisal Costs**: this classification encompasses the costs associated with finding the faulty product before it leaves the company, such as inspection and test, incoming inspection tests for vendors or supplier materials, and sustaining accurate and precise test and evaluation equipment.

4. **Prevention Costs**: Dr. Juran identified these costs as those resulting from keeping the defects to a minimum, including statistical process control, planning and organizing for quality, and training.

Based on Armand Feigenbaum, the author of Total Quality Control stated that the quality is a customer determination which is based on the customer’s actual experience with the product or service, measured against his or her requirements, stated or unstated, conscious, technically operational or entirely subjective and always representing a moving target in a competitive market.
There are several key words stand out in this definition:

1. **Customer determination**: Only a customer can decide if and how well a product or service meets his or her needs, requirements, and expectations.
2. **Actual experience**: The customer will judge the quality of a product or service not only at the time of purchase but throughout usage of the product or service.
3. **Requirements**: Necessary aspects of a product or service called for or demanded by the customer may be stated or unstated, conscious or merely sensed.
4. **Technical operational**: Aspects of a product or service may be clearly identified in words by the consumer.
5. **Entirely subjective**: Aspects of a product or service may only be conjured in a consumer’s personal feelings.

Table 2.1: Definitions of Quality

<table>
<thead>
<tr>
<th>Quality Gurun</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juran</td>
<td>Fitness for use (1964), conformance to specifications.</td>
</tr>
<tr>
<td>Crosby</td>
<td>Conformance to requirements.</td>
</tr>
<tr>
<td>Fegienbaum</td>
<td>Total composite…will meet the expectations of customers.</td>
</tr>
<tr>
<td>Deming</td>
<td>Aims at the needs of the customer, present and future.</td>
</tr>
<tr>
<td>Taguchi</td>
<td>Loss to society.</td>
</tr>
<tr>
<td>ISO 9000</td>
<td>Totality of features and characteristics of a product or service…to stratify stated or implied need.</td>
</tr>
</tbody>
</table>
2.2 The Evolution of Quality

Quality principles have evolved over time. Up until the advent of production, artisans completed individual products and inspected the quality of their own work or that of an apprentice before providing the product to the customer. If the customer experienced dissatisfaction with the product, he or she dealt directly with the artisan. In a production setting, the steps necessary to create a finished product are divided among a number of work stations, which each performs a single repetitive operation. In order to be interchangeable, the parts must be nearly identical. This allows the assembler to randomly select a part from a group of parts and assemble it with a second randomly selected part. For this to occur without problems, the machines must be capable of producing parts with minimal variation, within specifications set by the designer. If the parts are not made to specification, during assembly a randomly selected part may or may not fit together easily with its mating part. This situation defeats the idea of interchangeable parts.

2.2.1 Inspection

As the variety of items being produced, a need for monitoring the quality of the parts produced by those processes arises. The customer no longer directly with the individuals responsible for creating the product, and industries needed to ensure that the customer received a quality product. Inspection is refers to those activities designed to detect or find nonconformance existing in already completed products and services. Inspection involves the measuring, examining, testing, or gauging of one or more characteristics of a product or service. Inspection results are compared with established standards to determine whether or not the product or service conforms.

In a detection environment, inspection, sorting, counting, and grading a product comprise the major aspect of a quality professional’s position. This results in general feeling that the responsibility for quality lies in the inspection department. Inspection,