WIRELESS VALVE CONTROL VIA RF REMOTE TERMINATION UNIT (RTU)

MOHD SYAHRAWARDILLAH BIN MAD ZIN

This report in partial fulfilment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronic) With Honours

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

April 2011
Wireless Valve Control Via RF Remote Termination Unit

Tajuk Projek : (RTU)
Sesi Pengajian : 2010/2011

Saya MOHD SYAHRAWARDILLAH BIN MADZIN mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (√):

☐ SULIT* (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
☐ TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
☑ TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap: Kg. Tanjung, Jerangau,
23200, Bukt Besi
Dungun Terengganu

Tarikh: 29 April 2011

(TANDATANGAN PENYELIA)

DISTAN CM

ADIE BIN MOHD KHAFE
Pennyahat
Fakulti Kajurusaran Elektronik Dan Kajurusaran Komputer
Universiti Teknikal Malaysia Melaka (UTeM)
Karang, Berkunci No 1752
Pejabat Pos Duan Dungun 76105
Dungun Terengganu, Melaka

Tarikh: 29 April 2011
"I hereby declare that this report is the result of my own work except for the quotes as cited in the references."

Signature ...

Author : Mohd Syahrawardiiah Bin Mad Zin

Date : 29th APRIL 2011
"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronic) With Honours."

Signature

Supervisor's Name: Adie Bin Mohd Khafe

Date: 29th APRIL 2011
To my family and friends especially my Father and Mother
ACKNOWLEDGEMENT

First of all, I would like to offer my deepest appreciation and thanksgiving to ALLAH SWT. There is no way to measure what You’ve worth. You are The One who has made things possible. You deserve all glory and honour.

A special thanks, appreciation and deep gratitude to my project supervisor, En Adie Bin Mohd Khafe, who has been there to provide continuous guidance, advice, encouragement, support and generous amount of time in helping me to complete this project. It has been a great pleasure and privilege to learn from someone who is professional and charisma like him.

Sincere appreciation of course goes to my friends who give me unselfish support and my family for their support and encouragement throughout in the completion of this project. Without their endless sacrifices, constant love and steadfast support, I would never have reach this level.
ABSTRACT

This project describes an investigation of the use of Radio Frequency (RF) as the medium in control data communication between plant equipment include Valve as the final control element and sensor as the input device. The main purpose is to investigate the appropriate of the Radio Frequency to be the control data communication medium of Remote Termination Unit (RTU). The RTU is used to convert all the data into signal transmission form. The commonly RTU used the Fiber Optic and Ethernet cable as the transmission medium. In this project the Radio frequency (RF) is used as the transmission medium. Rather the fiber optic is the much better than RF, this project try to reduce the cost and reduce the problem within RF medium. This project is design for the hazardous plant. Therefore, control panel will build out of the plant area. All the automation control, such as the PLC will place in plant area include the instrument sensor, plant equipment and termination device (Valve). Moreover the input and output assemble in auxiliary room. The control panel only receives and transmits command data to auxiliary room. Even though the valve and process plant working automatically, all the operations are important to monitor. The process and operation are monitoring by the operator. Human Machine Interface (HMI) was used by design the graphical interface that represents the operation. Furthermore by the HMI the operation of the process also can be controlled manually especially to shutdown the operation, to bypass the interlocking, forcing the valve and so on. From the HMI, the operator also can know the alarm status and acknowledge it. The final result the valve as the controlled element can remotely and the plant status can controlled by the RF communication medium.
ABSTRAK

LIST OF CONTENTS

CHAPTER TITLE PAGE

PAGE TITLE i
DECLARATION ii
DEDICATION iv
ACKNOWLEDGEMENT v
ABSTRACT vi
ABSTRAK vii
CONTENTS viii
LIST OF TABLES xi
LIST OF FIGURES xii

I. INTRODUCTION

1.1 Project Introduction 1
1.2 Project Objectives 2
1.3 Problem statement 2
1.4 Scope of Project 3
1.5 Project Structure 4
II. LITERATURE REVIEW

2.1 Current Technology Remote Termination Unit
 2.1.1 The WRTU shall have the following minimum complement of inputs and outputs: 8
 2.1.2 LED Indicators shall include both performance and diagnostic categories. 9
 2.1.3 Serial Port with VT-100 User Interface 9
 2.1.4 Test Call Button 9
 2.1.5 Power Requirements 10

2.2 Radio Frequency (RF) module
 2.2.1 Type of the RF module Used 11
 2.2.2 RF Module features and Specification 12
 2.2.3 RF module Circuit 13

2.3 Temperature sensor
 2.3.1 About PT 100 RTD 16
 2.3.2 Characteristic Of RTD 17
 2.3.3 Wired Type of RTD 18

2.4 Level measurement 21

2.5 Pressure Switch
 2.5.1 Types Of Pressure Sensors 23
 2.5.2 Sensor Construction 24

2.6 Switching Circuit
 2.6.1 Types of transistor 24
 2.6.2 Using a Transistor as a Switch 26
2.7 Signal conditioning
 2.7.1 Perception of signal conditioning 27
 2.7.2 Signal Conditioning Process 28
 2.7.3 Amplifier 30

2.8 Programmable Logic Controller 35

III. METHODOLOGY

3.1 Circuit Design and Development 41
 3.1.1 Schematic Design 41
 3.1.2 Circuit Testing and Compiling 45
 3.1.3 Printed Circuit Board (PCB) Design 45

3.2 Software Development 47
 3.2.1 Software Development Activity 47
 3.2.2 PLC programming GRAFCET 50
 3.2.3 PLC Programming 52

3.3 PLC Interfacing and Combination 55
 3.3.1 Power Circuit 55
 3.3.2 Input and Output connection 56

3.4 Control Valve 57
 3.4.1 Electromagnetic Valve 57
 3.4.2 Electro-pneumatic Valve 58
IV. RESULTS AND DISCUSSIONS

4.1 Result
 4.1.1 Temperature sensor PT-100 59
 4.1.2 Radio Frequency (RF) module 65
 4.1.3 Signal Conditioning Circuit. 68
 4.1.4 PCB and circuit development Revenue 69
 4.1.5 Prototype mechanism fabrication and development revenue 71

4.2 Discussion
 4.2.1 Temperature Sensor (PT-100) 73
 4.2.2 RF module 74
 4.2.3 Signal Conditioning Circuit 74

V. CONCLUSIONS AND RECOMMENDATION

5.1 Conclusions 75
5.2 Recommendation 76

REFERENCES 77
APPENDICES 78
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Transmitter TX9902B data</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Receiver RX9926 data</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Component list for the transmitter circuit</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Component list for the receiver circuit</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Temperature Set Point</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Level set point</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Label Statement</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>RTD Result</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Output status of RF module</td>
<td>65</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>project Methodology</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>TX9902B Transmitter module</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>RX9926 Receiver module</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Radio Frequency signal transmitter</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Radio Frequency signal Receiver</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Platinum RTD</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>RTD characteristic curve</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Two-wire Platinum RTD</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Three-wire Platinum RTD</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Four-wire Platinum RTD</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Combination of 2- and 3-wire Platinum RTD</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>Float Level sensors</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>Pressure Sensor</td>
<td>24</td>
</tr>
<tr>
<td>2.13</td>
<td>Bipolar Junction Transistor (BJT)</td>
<td>25</td>
</tr>
</tbody>
</table>
2.14 NPN Transistor Circuit 25
2.15 NPN Transistor Switching Circuit 26
2.16 Op-Amp (Comparator) 30
2.17 Op-Amp (Inverting amplifier) 30
2.18 Op-Amp (Differential amplifier) 32
2.19 Op-Amp (Voltage follower) 33
2.20 Op-Amp (inverting integrator) 34
2.21 OMRON PLC 37
2.22 Control Panel with PLC 37
3.1 Methodology Flow Chart 39
3.2 Temperature signal conditioner schematic 41
3.3 Temperature Conditioner Circuit Schematic 43
3.4 Transmitter schematic 44
3.5 Receiver schematic 44
3.6 Temperature Signal conditioning Circuit 45
3.7 Level Signal conditionining Circuit 46
3.8 Transmitter Circuit 46
3.9 Receiver Circuit 46
3.10 Development waterfall Chart) 48
3.11 Overall Process Operations 49
3.12 Process Operation GRAFTSET 51
3.13 Interlock Activation 52
3.14 Operation Loop 54
3.15 Timer Loop 54
3.16 Power Circuit 55
3.17 PLC Connection 56
3.18 Solenoid connection 57
3.19 Electromagnetic Valve 57
3.20 5/2 double acting solenoid valve 58
3.21 double acting cylinder 58
3.22 Ball Valve 58
4.1 Vo vs Temperature (calculated) 62
4.2 Vo vs Temperature (measured) 63
4.3 Vo vs Temperature (Compression result) 64
4.4 Inverter Circuit 66
4.5 PNP transistor switches 67
4.6 Signal Conditioning Circuit 68
4.7 Temperature Signal conditioning Circuit PCB 69
4.8 Level Signal conditioning Circuit 69
4.9 Transmitter Circuit PCB 70
4.10 Receiver Circuit PCB 70
4.11 Process Vessel 71
4.12 Electro pneumatic valve 71
4.13 Heater positioning 71
4.14 Manual control Safety Valve 72
4.15 Electromagnetic Control Valve 72
4.16 Sensor Positioning 72
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJT</td>
<td>Bipolar Junction Transistor</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/output</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller.</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RTD</td>
<td>Resistance Thermal Detector</td>
</tr>
<tr>
<td>RTU</td>
<td>Remote Termination Unit</td>
</tr>
<tr>
<td>RX</td>
<td>Receiver</td>
</tr>
<tr>
<td>TX</td>
<td>Transmitter</td>
</tr>
<tr>
<td>WRTU</td>
<td>Wireless Remote Termination Unit</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Project Introduction

Valve is a device that regulates the flow of a fluid (gases, liquids, fluidized solids, or slurries) by opening, closing, or partially obstructing various passageways. The traditional valve is manually controlled by hand. In industry now day and also in this project the valve controlled automatically by the microprocessor or microcontroller. The controller collects the input data from the sensor of process parameter to compute and give the output to termination output especially valve. The actuator was used to control the valve regulation. The electrical signal in current and voltage that getting from microcontroller or PLC outputs need to convert mechanical motion. The solenoid valve for digital output and current to pneumatic converter for analog output signal are used for signal conversion. [1]

Even though the valve and process plant working automatically, all the operations are important to monitor. The Human Machine Interface (HMI) was used for represents graphical interface of the operation. Furthermore by the HMI the operation of the process also can be controlled manually especially to shutdown the operation, to bypass the interlocking, forcing the valve and so on.
This project is design for the hazardous plant. Therefore, control panel will build out of the plant area. All the automation control, such as the PLC will place in plant area include the instrument sensor, plant equipment and termination device (valve). moreover the input and output assemble in auxiliary room. The control panel only receives and transmits command data to auxiliary room.

To communicate between control panel and auxiliary room, the Remote Transmission Unit (RTU) is used. The RTU is used to convert all the data into signal transmission form. The commonly RTU used the Fiber Optic as the transmission medium. In this project the Radio frequency (RF) is used as the transmission medium. Rather the fiber optic is the much better than RF, this project try to reduce the cost and reduce the problem within RF medium.

1.2 Project Objectives

To produce the wireless data transmission via RF Remote Transmission Unit (RTU) between Valve at site and Human Machine Interface (HMI) at control panel, which it can reduce the installation and maintenance cost. In addition it also can simplify the data transmission medium system.

1.3 Problem Statement

By current RTU in industries, that were used the ethernet cable with modbus Module for short distance and fiber optic for long distance of data transmission medium. This project is concerned to the long distance communication.
For ethernet networking it just for indoor and short distance linking only. It not purpose to the other.

For long distance, the fiber optic may be used. To setup the fiber optic need the big budget and cost. Fur themore for maintenance, preventive and reactivation maintenance also need the much cost budget.

Although, there are a lot of merits in using fiber optic, there are some weakness about it. Some of the examples are.

i. Can lose signal caused by physics and material trouble.
ii. More difficult to be coupled with ordinary conventional cable.
iii. The price which enough expensive in comparison with technological copper cable.
iv. Enough level of investment which needed levying of human resource which expert inside.
v. Level of difficulty of implementation and deployment enough fiber optics are high.
vi. Cumbersome to install, because fibers are damaged if they are bent sharply.

Moreover, the fiber optic cable placed under the ground. It become hardly to find the failure point if the cable breakdown. The changed of environment also will impact to the cable working condition.

1.4 Scope of Work

In this project, the software and hardware will be developed. For hardware, mechanical part such as valve actuator, and other instrument sensor, and also the
electronic circuit are design and fabricate. The electronic circuits are use as well as, comparator, voltage balanced bride, signal amplifier and so on. In circuit fabrication the circuit designs software use to implement the circuit track and the track will print into the PCB by the PCB fabricating method.

The software development is concert to the PLC programming for hardware operation and the interface programming such as Lab view for the GUI or HMI. The prototypes also design to ensure this project can operate and make this project realistic.

When discussing about control systems, a control element needs to chosen. In this project, two control elements are to be determined. The PLC that will be choses is the OMRON PLC CJ1G/H. The reason for this choice is that two models are easily found and a lot of document that will help in this project.

The software programming that will be used for the PLC would be the CX-Programmer whereas designs and creation of diagrams are made. The software programming tool for the PIC however is the SourceBoost IDE and the Proteus. SourceBoost IDE will be used to write the programs while

Figure 1.1 project Methodology
Figure 1.1 was detailed about the flow of the methodology need to proceed. In this project execution the step must be followed one by one.

1.5 Report Structure

This report shall explain the first part of the final year project, which is the research. This report is going to be the reference material in case there is improvement can be done for this project. All contents of this report are useful to bring this project to the next level in fast pace. So it is important that the contents of this report to be thoroughly researched and put into place.

Chapter 1 is introduces the project as a whole. The early and basic explanations are mentioned in this chapter. This chapter consists of the project’s objectives, statements of problems, scope of work, and the simplified methodology.

Chapter 2 is literature review. Past projects or researches are taken into consideration when completing this chapter. The ways those projects and researches are done are compared with what this project is all about. These comparisons are done to understand what this project is all about and where it stands.

Chapter 3 is explains how this project came to be. It is the methodology. The ways and procedures in which ensure this project is done. This chapter will enlighten the part most important of all, the flow this project. What is researched and what needs to be done is explained in this chapter.
Chapter 4 concentrates on the result and discussion of this project. What has been done thus far is explained in diagrams and written programs. Why the results are like so will also be explained. The reasons and setbacks that cause the project to be halted are discussed in this chapter. The expected results will also be mentioned in this chapter.

Chapter 5 is the final chapter in this report. The conclusions and recommendations are placed in this chapter. The conclusion is the final overview of this project. In other words, the conclusion is the summary of what has been done throughout this project.