SMART CAR ALARM SYSTEM USING PIC MICROCONTROLLER

Cheong En Yi

This report is submitted in partial fulfillment of the requirements for award of Bachelor of Electronic Engineering (Computer Engineering) With Honours

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

April 2010
Tajuk Projek : Smart Car Alarm System Using PIC Microcontroller

Sesi Pengajian : 2009/2010

Saya Cheong En Yi mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hak milik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (✓):

 - SULIT*
 (Mengandungi maklumat yang berdampak keselamatan atau kepentingan Malaysia seperti yang tertuang di dalam AKTA RAHSIA RASMI 1972)
 - TERHAD*
 (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
 - TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS)

Alamat Tetap: No, 158 Jln Choo Lip Kung,
Tmn Taynton View,
56000 Cheras,
Kuala Lumpur.

(COP DAN TANDATANGAN PENYELIA)

MUZALIFAH BINTI MOHD SAID
Pensyarah
Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka (UTeM)
Kampus Benung No 1752
Pejabat Pos Durian Tunggal
75100 Durian Tunggal, Melaka.

Tarikh: 30th April 2010

© Universiti Teknikal Malaysia Melaka
"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature :
Author : Cheong En Yi
Date : 30th April 2010
"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of bachelor of Electronic Engineering (Computer Engineering) With Honours."

Signature

Supervisor’s Name : Miss Muzalifah Bt Mohd Said

Supervisor’s Name : Miss Syafeeza Bt Ahmad Radzi

Date : 30th April 2010
Dedicated to my beloved family
To my father and mother
To my respected lecturer/supervisor
And to all my course mates
For their support, advice, patience and understanding.
ACKNOWLEDGEMENT

Firstly, I would like to express my greatest gratitude and sincere thanks to my supervisor, Miss Muzalifah Bt Mohd Said, and my previous supervisor Miss Syafeeza Bt Ahmad Radzi, for their valuable advice and assistance in the consultation of this Final Year Project. At the same time, I would never forget all the guidance and moral support which had given by them during my difficulty times. Moreover, she had given me strong motivation throughout the whole project.

Besides, I would take this opportunity to show my appreciation to my university that is Universiti Teknikal Malaysia Melaka for giving me this chance to complete my project by giving me lab facilities and equipments. Moreover, I really appreciate that putting the Final Year Project as a compulsory subject for every student in this university.

Furthermore, I would like to thank my beloved father and mother for their encouragement and never ending support. Their support is important, because without it I would not have been able to come this far. Lastly, my deepest appreciation goes to all my fellow friends for their companionship, fruitful suggestion, and wishes.
ABSTRACT

The first case of car theft was happened in 1896. It was happened a decade after gas-powered cars were invented. From that time until today, cars have been a good target for thieves. It is because, cars are valuable, easy to resell, and have market. Therefore, car security system has always been a matter of concern among car owners. Advancement in technology enables new and more innovative methods of vehicle safety to be introducing into the market. Today’s vehicle security systems mostly only have to lock or unlock the door and sounding the siren in the case of intrusion. The siren can only alert those who are near the vehicle during an emergency and this shows that the existing security systems sometimes are not effective. The main objective of this project is to improve the existing system by developing a sophisticated car alarm system based on combination of GSM modem, PIC16F877A microcontroller, shock sensor, and ultrasonic motion detection sensor. This system is used to send short message service (SMS) to owner when it is triggered. This project will be expected to enhance the capability of the existing system and cost of the system is reduced so it should have good application value in future as well as reduce the statistic of stolen cars.
ABSTRACK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PROJECT TITLE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>BORANG PENGESAHAN STATUS LAPORAN</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDIX</td>
<td>xv</td>
</tr>
</tbody>
</table>

I

INTRODUCTION

1.1 Project Overview 1
1.2 Objective of Project 2
1.3 Problem Statement 3
1.3 Scope and organization 4

II

LITERATURE REVIEW

2.1 Introduction 6
2.2 Chapter Overview 6
2.3 Microcontroller
2.3.1 PIC Microcontroller
2.4 Programming
2.4.1 PIC C Compiler
2.4.2 WINPIC800
2.4.3 JDM programmer
2.5 PROTEUS 7 Professional
2.6 Liquid Crystals Display
2.7 Motion Detection
2.7.1 Ultrasonic
2.7.2 Infrared
2.7.3 Infrared Vs Ultrasonic
2.8 Shock Detection
2.9 GSM Modem
2.10 EIA RS232 Standard
2.11 Short Message Services (SMS)
2.11.1 SMS Standards
2.12 AT (Attention) Command
2.12.1 Microsoft Hyperterminal
2.13 Printed Circuit Board (PCB)
2.13.1 Protel DXP

III METHODOLOGY

3.1 Introduction
3.2 Process Flowchart
3.3 LCD program develop
3.4 PROTEUS 7 Simulation
3.5 WINPIC800 and JDM Programmer
3.6 Ultrasonic Detector Circuit
3.7 Shock Sensor Circuit
3.8 GSM Modem Operation in Hyperterminal
IV RESULTS AND DISCUSSION

4.1 Introduction 38
4.2 Result of Simulation 39
 4.2.1 Simulation of Shock Sensor with LCD 39
 4.2.3 Hardware Testing on Breadboard 40
4.3 Result on Hardware 40
 4.3.1 Ultrasonic Motion Detector 41
 4.3.2 Overall Project PCB 42
4.4 Discussion 45

V CONCLUSION & FUTURE WORKS

5.1 Conclusion 47
5.2 Suggestion 47

REFERENCES 49
LIST OF FIGURES

Figure 2.1 PIC16F877A pinout 8
Figure 2.2 PIC16F877A usages and features 9
Figure 2.3: Schematic of JDM programmer 12
Figure 2.4: LCD .. 14
Figure 3.1: Process flowchart for whole project 26
Figure 3.2: A Graphic User Interface of PIC C Compiler 27
Figure 3.3: LCD.c driver 27
Figure 3.4: Source code to interface LCD and buzzer ... 28
Figure 3.5: PIC interface with LCD circuit 29
Figure 3.6: Graphic User Interface of WINPIC800 30
Figure 3.7: JDM programmer is selected 30
Figure 3.8: HEX file is loaded 31
Figure 3.9: JDM programmer 31
Figure 3.10: Ultrasonic Motion Detector Circuit 32
Figure 3.11: Schematic of shock sensor 33
Figure 4.1: LCD is displaying 39
Figure 4.2: LCD and LED is triggered 40
Figure 4.3: Shock sensor and LCD circuit with PIC 41
Figure 4.4: Ultrasonic motion detector 42
Figure 4.5: Ultrasonic motion detector, top and bottom view 42
Figure 4.6: PIC application board top view 43
Figure 4.7: PIC application board bottom view 43
Figure 4.8: Second board top view 44
Figure 4.9: Second board bottom view 44
<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GSM - Global System for Mobile Communications</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>PIC - Programmable Interface Controller</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>SMS - Short Message Service</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>LCD – Liquid Crystal Display</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>GPS – Global Positioning System</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>HEX – Hexadecimal</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>AT – Attention</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>CPU – Central Processing Unit</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>ALU – Arithmetic Logic Unit</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>ADC – Analogue to Digital Converter</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>PWM – Pulse Width Modulation</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>RISC – Reduce Instruction Set Computer</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>CISC – Complex Instruction Set Computer</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>RAM – Random Access Memory</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>EEPROM – Electrically Erasable Programmable ROM</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>PC – Personal Computer</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>MCU – Microcontroller Unit</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>ICSP – In-Circuit Serial Programming</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>JDM – Jens Dyekjar Madsen</td>
<td>11</td>
</tr>
<tr>
<td>20</td>
<td>LED – Light Emitting Diode</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>PIR – Passive InfraRed</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>DTE – Data Terminal Equipment</td>
<td>18</td>
</tr>
<tr>
<td>23</td>
<td>EIA – Electronic Industries Alliance</td>
<td>18</td>
</tr>
<tr>
<td>24</td>
<td>DCE – Data Circuit Terminating Equipment</td>
<td>19</td>
</tr>
<tr>
<td>25</td>
<td>SDCCH – Slow Speed Data Channel</td>
<td>20</td>
</tr>
<tr>
<td>No</td>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>26</td>
<td>MAP</td>
<td>Medium Access Protocol</td>
</tr>
<tr>
<td>27</td>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>28</td>
<td>PWB</td>
<td>Printed Wiring Board</td>
</tr>
<tr>
<td>29</td>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>30</td>
<td>SIM</td>
<td>Subscriber Identity Module</td>
</tr>
<tr>
<td>31</td>
<td>PSM</td>
<td>Project Saujana Muda</td>
</tr>
<tr>
<td>32</td>
<td>Tx</td>
<td>Transmit</td>
</tr>
<tr>
<td>33</td>
<td>Rx</td>
<td>Receive</td>
</tr>
<tr>
<td>34</td>
<td>ECU</td>
<td>Electronic Control Unit</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

APPENDIX A: SOURCECODE FOR LCD AND SHOCK DETECTION 50
APPENDIX B: PIC MICROCONTROLLER INTERFACE WITH GSM MODEM SOURCE CODE 52
APPENDIX C: PIC MICROCONTROLLER INTERFACE WITH LCD SOURCE CODE 54
APPENDIX D: SMART CAR ALARM SYSTEM OVERALL SOURCE CODE 56
CHAPTER 1

INTRODUCTION

1.1 PROJECT OVERVIEW

The appearance of automobiles impacts the life of people. It is becoming the progressive symbol of modern society. Not only the demand on performance and quality of vehicles increase rapidly, but there is also demand on anti-theft system for vehicles. Although some sophisticated system like GPS can use to retrieve vehicles, but people dare not use it due to the cost is too high. By using the GSM network for this anti-theft system, the cost is lower compare to GPS. (1)

This Smart Car Alarm System is focusing on anti-theft security system for car. The remote part of this system is based on GSM communication network. The system is composed by MOD9001 GSM modem, PIC16F877A Microcontroller, vibration sensor, ultrasonic sensor, 2x16LCD screen, buzzer, and user’s mobile phone.

The idea of using a shock sensor is simple: if someone hits, jostles or moves your car, the sensor sends a signal to the PIC microcontroller and indicating the motion. Then the PIC microcontroller signals a warning. Through GSM modem, the microcontroller sends SMS to mobile phone of the car owner. Moreover, if a thief armed with a tow truck and lifted up your car
and drag the car away, shock sensor can detect this situation. To protect against car thieves with tow trucks, shock sensor is the solution.

This system is equipped with 2x16 LCD to indicate status of the system. The LCD is to display which sensors are sending the signal to the microcontroller and detected by the microcontroller. In addition, the car owner will automatically receive and notification SMS from the system when the alarm is triggered. Once the message sent, the LCD will display: Message Sent. This as to indicate the alert message has already been sent by the system to the owner.

The working principle of the whole system is: The car is in a situation where alarm is activated when the owner of the car leaves. The first type of protection: When a theft trying to steal the car and entered the car, the ultrasonic sensor detects movement inside the car. The system will trigger the buzzer and send message to notify the owner at the same time. The LCD shows the ultrasonic sensor is detected and message sent. The second type of protection: When a theft trying to steal the car by towing the car. The vibration sensor detects the shock of the car when towing. The system will trigger the buzzer and send message to notify the owner at the same time. The LCD shows the vibration sensor is detected and message sent.

1.2 OBJECTIVES

The following objectives are needed as a guide to achieve the goal of this project. They are:
i) To design a car alarm system using PIC microcontroller.
ii) To trigger the car alarm when intruders inside the car are being detected.
iii) To trigger the car alarm when the car is being tow by a tow car.
iv) To interface PIC microcontroller to GSM modem.
v) To write a program in C programming language for the microcontroller to detect the sensors’ signals and trigger the alarm as well as send the alert message to owner via GSM modem.
vi) To display the alarm status on 2x16 LCD.

1.3 PROBLEM STATEMENT

The first documented case of car theft was in 1896, only a decade after gas-powered cars were first introduced. From that early era to today, cars have been a natural target for thieves. They are valuable, reasonably easy to resell their parts. Moreover, people are putting a lot of valuable items inside their car: For example, they put wallet, coins, hand bags, important documents, smart-tag, laptops and etc. That is why for a normal switches alarm is not enough to protect car from stolen, windows broken, and car towing.

A car security system has always been a matter of concern among car owners. The advancement in technology helps us to create more and more methods to protect our cars. Today’s car security systems mostly only have simple switches on the doors and sounding the siren in the case of intrusion. The siren can only being triggered by intruders. Nowadays, thieves are smart; they can break a window or tow a car by a truck. This shows that the existing security systems are not effective. By improving the existing system a smart car alarm system is required. This system enables sensors to detect the window breaks, car vibrations, and car lift by tow truck.

Although some sophisticated system like GPS can use to retrieve vehicles, but people dare not use it due to the cost is too high. By using the GSM network for this anti-theft system, the cost is lower compare to GPS. (1) Moreover, face detection technique also implemented in car security because this kind of technique is effective and fast, and one alarm signal could be given to make an alarm or “call” the police. (2) However, once again the system is costly and people around the car seldom pay attention to the sounded alarm signal when alarm is triggered by the face detection system.
1.4 SCOPE AND ORGANIZATION

There are several processes involved in order to complete this Smart Car Alarm System. The system consists of several devices such as PIC, shock sensor, ultrasonic motion sensors, LCD screen, and GSM modem.

Besides the components and devices, there are two programs used in this project. Proteus 7 Professional is used to design the circuit and do some simulation works, while the other one is PIC C Compiler is software which used to compile the C language code to HEX code so that it can be compatible to the PIC. The above programs are used in this project to complete the system.

Inputs: Shock sensor, Ultrasonic motion sensor.
Outputs: Siren, LCD, SMS.

The following shows all the circuits applied in this project:-

a) Shock sensor circuit

The idea of using a shock sensor is simple: if somebody hits, jostles or otherwise moves the car, the sensor sends a signal to the microcontroller and indicating the intensity of the motion. Depending on the severity of the shock, the microcontroller signals the siren.

b) Ultrasonic Motion Detector

It is to protect your car from stolen. It can detect motion of intruder inside your car. The detector is transmitting and receiving ultrasonic so that it can detects motion. Once that occurs, the detector can turn on the buzzer.

c) Liquid Crystal Display (LCD)

It is to current status of the system such as message sent, alarm has triggered, shock detected motion detected, and etc. The ideal of using this device in the project is because it is much lighter and consumes less power than the cathode-ray tubes. Moreover, it is easy to interface with
microcontroller digitally and its running power is 5volts which is same and the microcontroller.

d) GSM modem

It is to transfer data from microcontroller to GSM network. Generally, the GSM modem is used for remote application such as vehicle navigation, remote monitoring, wireless Internet access, and etc. The function of the modem in this project is to send text message using SMS. It is convenient to use because it runs on AT command set and RS232 interface.
CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter reviews some references from previous projects, journals, articles, books and datasheets. All these information were collected from the different sources such as library, internet, product manual and etc. Furthermore, the information gathered is related to the background study of this project.

2.2 CHAPTER OVERVIEW

This chapter explains on information which related to the Smart Car Alarm System. This chapter reviewed each component used in the system. The components involve are: Microcontroller, Shock Sensor, Ultrasonic Motion Detector, GSM modem, and LCD.

2.3 MICROCONTROLLER

A microcontroller consist of Central Processing Unit (CPU), Arithmetic Logic Unit (ALU), input / output (I / O), memory and peripherals devices combined together to a form of integrated chip. Microcontroller and
microprocessor both contains CPU, however, besides the usual arithmetic and logic elements the microcontroller integrates additional elements such as read-write memory for data storage, read-only memory for program storage, Flash memory for permanent data storage, peripherals, and input/output interfaces. Furthermore, microcontrollers are consuming relatively small energy power (milliwatts or even microwatts), and will generally have the ability to retain functionality while waiting for an event such as a button press or interrupt. Some microcontrollers are compatible with energy saving function. During that time the power consumption may be just nanowatts, making them ideal for low power and long lasting battery applications.

2.3.1 PIC Microcontrollers

Microchip manufactures a series of microcontrollers called PIC. That is Peripheral Interface Controller or Programmable Intelligent Computer. They are different kinds of microcontroller available from Microchip. They are from some basic low memory types to ADC (Analogue to Digital Converter) and even PWM (Pulse Width Modulation) ready. The PIC Microcontrollers are in Reduce Instruction Set Computer (RISC) design which is containing small number of instructions only. For example the PIC16F877A, it just contains thirty seven instructions. Since it is less instruction compare to Complex Instruction Set Computer (CISC), so its design also will be much simpler than CISC. Because of its RISC design, it must support high clock speed to make it faster.

The microcontroller that will be used in this project is PIC16F877A. It is at middle-high-range series of the microcontrollers developed by MicroChip Inc and it is also characterized as RISC architecture microcontroller. There are 35 single word instructions in this microcontroller. Figure 2.1 shows the pinout for the PIC16F877A.
From the Figure 2.1, there are 5 ports available in this PIC which is port A, port B, port C, port D, and port D. These ports are bidirectional I/O ports, which mean each port can be used as an input or an output or both. Moreover, it has many powerful features such as interrupt capability, 8K × 14 words of Flash program memory, 368 × 8 bytes of data memory (RAM), 256 × 8 bytes of EEPROM data memory, and single 5V in circuit serial programming capability and etc.
The following shows the usages and features of the PIC16F877A.

Figure 2.2 PIC16F877A usages and features