STUDY OF HEAT EXCHANGER EFFECT IN A CAR AIR CONDITIONING SYSTEM

NUR FASIHA BINTI NAZIRMUIDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
I/ We have read this thesis

and from my/out opinion this thesis

is sufficient in aspects of scope and quality for awarding

Bachelor of Mechanical Engineering (Thermal-Fluid)

Signature :……………………………….

Name of supervisor :……………………………….

Date :………………………………..
STUDY OF HEAT EXCHANGER EFFECT IN A CAR AIR CONDITIONING SYSTEM

NUR FASIHA BINTI NAZIRMUIDIN

A project report submitted in partial fulfillment of the requirements for the award of Degree of Bachelor Mechanical Engineering (Thermal-Fluid)

Faculty of Mechanical Engineering
Universiti Teknikal Malaysia Melaka

APRIL 2010
I hereby, declare this thesis is results of my own research accept as cited in references

Signature : ………………..

Author’s Name : NUR FASIHA BINTI NAZIRMUDIN

Date : ………………………
Firstly, I would to give my greatest gratitude and appreciation to my supervisor of this Projek Sarjana Muda (PSM), Encik Faizil bin Wasbari for his guidance, support and practical advisers throughout the entire project. I would also like to thanks to Encik Razmi bin A. Razak for his assistance and guidance contributed toward the success of the project.

In addition, I could not execute this project smoothly without my partner’s help, Chan Hong Keat who encourage me toward the completion this project. I also like to give my appreciation to my family, which support me for completion this project. Lastly, special thanks to each and every individual who help me throughout the efforts of this report be in form of encouragement and advice.
This research is about the effect of heat exchanger in terms of Coefficient of Performance car air conditioning system. Suction-liquid heat exchanger are used in this experiment while for the material is used aluminum alloys after the consideration of selection material. In this research, Proton Wira’s air conditioning system is used for the experiment. The experimental with different lengths of suction-liquid heat exchanger and without heat exchanger are presented and analyzed. There are three different lengths of suction-liquid heat exchanger include in this report. A comparison of COP that is calculated between different lengths of suction-liquid heat exchanger and without heat exchanger is enclosed. An increase of COP has been found by using longer length of heat exchanger. The improvement COP of the refrigeration system up to 33.33% between the longer length of heat exchanger and without heat exchanger. Besides that, this research also includes the experiment for fuel consumption in car engine. The fuel that has been used is increase when the rotational speed increase.
TABLE OF CONTENTS

VERIFICATION ii
ACKNOWLEDGEMENT iii
ABSTRACT iv

ABSTRAK v
TABLE OF CONTENTS vi-ix
LIST OF FIGURES x-xiv
LIST OF TABLES xv-xvii

CHAPTER 1: INTRODUCTION

1.1 Background Study 1
1.2 Problem Statement 1
1.3 Objectives 2
1.4 Scopes 2

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction 3
2.2 Flow Arrangement 3
2.3 Types of Heat Exchanger 4-9
2.4 Car Air Conditioning 9-10
2.5 Car Air Conditioning Components 11-17
2.6 The Cooling System 18-20
2.7 Coefficient of Performance 20-21
2.8 Selection of Heat Exchanger 21-22
2.9 Heat Exchanger Comparison 22-25
2.10 A chart for predicting the possible advantage of adopting a suction/liquid heat exchanger in refrigerating system 25-29

2.11 Refrigeration system performance using liquid-suction heat exchangers. 29-31
2.12 Evaluation of suction-line/liquid-line heat exchange in the refrigeration cycle 31-34

CHAPTER 3: METHODOLOGY

3.1 Introduction 35
3.2 Literature Review 35
3.3 Conceptual Design 37
3.4 Selection of Heat Exchanger 37
3.5 Detail design and drawing 37
3.6 Selection of Material 37
3.7 Fabrication 38
3.8 Setup the components 38
3.9 Run the testing 38
3.10 Result 39
3.11 Data Analysis 39-40
3.12 Report Writing 41
CHAPTER 4: SELECTION OF DESIGN AND MATERIAL

4.1 Introduction 42
4.2 Selection of Design 42
4.3 Selection of Material 43-46

CHAPTER 5: DESIGN PROPOSAL AND DETAIL OF DESIGN

5.1 Introduction 48
5.2 Explanations of Design 48
5.3 Detail Drawing 49-54

CHAPTER 6: MODIFICATION AND PROCEDURE

6.1 Modification of Air Conditioning System 55-59
6.2 Procedure for the experiment 60

CHAPTER 7: RESULTS

7.1 Results without heat exchanger 61-65
7.2 Results with heat exchanger 10 cm 66-70
7.3 Results with heat exchanger 20 cm 71-74
7.4 Results with heat exchanger 30 cm 75-78
CHAPTER 8: DATA ANALYSIS

8.1 Heat exchanger effectiveness 79-82
8.2 Refrigeration cycles on p-H diagram 82-88
8.3 Effects of heat exchanger on COP 88-89
8.4 Effect of fuel consumption for without heat exchanger and different lengths of heat exchanger 89-90

CHAPTER 9: DISCUSSION

9.1 Effect different size heat exchanger on refrigeration system 91-93
9.2 Effect different sizes of heat exchanger in terms of fuel consumption 93
9.3 Limitation during the experiment 93-94

CHAPTER 10: CONCLUSION AND RECOMMENDATION

8.1 Conclusion 95
8.2 Recommendation for future works 96

REFERENCES 97-98

BIBLIOGRAPHY 99

APPENDICES 100
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1:</td>
<td>Shell and Tube Heat Exchanger</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2.2:</td>
<td>Conceptual diagram of a plate and frame heat exchanger.</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.3:</td>
<td>A single plate heat exchanger</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.4:</td>
<td>Tubular Heat Exchanger</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.5:</td>
<td>Car Air Conditioning Systems</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(Source: http://www.visteon.com)</td>
<td></td>
</tr>
<tr>
<td>Figure 2.6:</td>
<td>Compressor</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(Source: http://images.search.yahoo.com/images/condenser)</td>
<td></td>
</tr>
<tr>
<td>Figure 2.7:</td>
<td>Condenser</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(Source: http://images.search.yahoo.com/images/compressor)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2.8: Evaporator
(Source: http://images.search.yahoo.com/images/evaporator) 12

Figure 2.9: Orifice Tube
(Source: http://specialtauto.com/air-conditioning-systems) 13

Figure 2.10: Thermal Expansion Valve
(Source: http://specialtauto.com/air-conditioning-systems) 14

Figure 2.11: Receiver Drier
(Source: http://specialtauto.com/air-conditioning-systems) 15

Figure 2.12: Accumulator
(Source: http://specialtauto.com/air-conditioning-systems) 15

Figure 2.13: Heat Convection
(Source: www.vtaide.com/png/heat2.htm) 20

Figure 2.14: Heat Exchanger Tubular Reactor
(Source: www.elsevier.com/locate/cep) 23

Figure 2.15: Schematic refrigeration cycle adopting suction/liquid heat exchanger.
(Source: Mastrullo and Mauro (2007)) 26
Figure 2.16: Thermodynamics transformation of a basic cycle with and without suction-liquid heat exchanger.
(Source: Mastrullo and Mauro (2007)) 27

Figure 2.17: The COP'/COP ratio for R-717 and R-134a, for various condensing temperature and evaporating temperature.
(Source: Mastrullo and Mauro (2007)) 28

Figure 2.18: Schematic of typical vapor-compression refrigeration cycle with liquid-suction heat exchanger
(Source: Klein (2000)) 29

Figure 2.19: Relative capacity index vs \(\frac{h_{vap}}{(C_p,L T_c)} \) for various temperature lifts for a liquid-suction heat exchanger with no pressure losses and effectiveness=1.0.
(Source: Klein (2000)) 31

Figure 2.20: Schematic of hardware arrangements for (a) the basic cycle and (b) cycle with liquid-suction line heat exchanger
(Source: Domanski and Didion (1994)) 32

Figure 2.21: Key refrigerant state point in basic cycle and LLSL-HX cycle.
(Source: Domanski and Didion (1994)) 33

Figure 3.1: Flow chart for methodology 36

Figure 3.2: Horizontal line for high and low pressure 40
Figure 3.3: p-H diagram

Figure 4.1: Graph of Thermal Conductivity (BTU.ft/h.ft².F) versus Price (USD/lb)
(Source: CES Software (2005))

Figure 5.1: Isometric View for length 10 cm

Figure 5.2: Orthographic View for 10 cm

Figure 5.3: Isometric View for length 20 cm

Figure 5.4: Orthographic View for length 20 cm

Figure 5.5: Isometric view for length 30 cm

Figure 5.6: Orthographic view for length 30 cm

Figure 6.1: Suction hose

Figure 6.2: Insulation tape

Figure 6.3: Aluminum pipe

Figure 6.4: Aluminum tube

Figure 6.5: Hacksaw

Figure 6.6: Aluminum wire

Figure 6.7: Hose clip

Figure 6.8: Different length of aluminum pipe.

Figure 6.9: Two different parts of aluminum tube after cutting process
Figure 6.10: Aluminum pipe after brazing process
Figure 6.11: The unwanted part of suction hose
Figure 6.12: Suction hose and liquid line.
Figure 6.13: Tighten of suction hose and liquid line by using aluminum wire
Figure 6.14: Complete modification of heat exchanger
Figure 7.1: Schematic of experimental system without heat exchanger
Figure 7.2: Schematic of experimental system with heat exchanger
Figure 8.1: Effectiveness versus rotational speed for heat exchanger 10 cm
Figure 8.2: Effectiveness versus rotational speed of heat exchanger 20 cm
Figure 8.3: Effectiveness versus rotational speed of heat exchanger 30 cm
Figure 8.4: p-H diagram for refrigeration cycle of 1000 rpm
Figure 8.5: p-H diagram for refrigeration cycle of 1500 rpm
Figure 8.6: p-H diagram for refrigeration cycle of 2000 rpm
Figure 8.7: p-H diagram for refrigeration cycle of 2500 rpm
Figure 8.8: COP versus Rotational speed (rpm)
Figure 8.9: Fuel consumption (ml) versus Rotational speed (rpm)
Figure 9.1: Suction-liquid heat exchanger in air conditioning system
LIST OF TABLES

Table 2.1: Heat exchanger capability with their different reactor.
(Source: www.elsevier.com/locate/cep) 25

Table 4.1: Mechanical Properties for Aluminum alloys
(Source: *CES Software (2005)*) 44

Table 4.2: Thermal Properties for Aluminum alloys
(Source: *CES Software (2005)*) 44

Table 4.3: Mechanical Properties for Copper alloys
(Source: *CES Software (2005)*) 45

Table 4.4: Thermal Properties for Copper alloys
(Source: *CES Software (2005)*) 45

Table 4.5: Selection of material 45

Table 7.1: Results for 1000 rpm without heat exchanger 62

Table 7.2: Results for 1500 rpm without heat exchanger 63

Table 7.3: Results for 2000 rpm without heat exchanger 64
Table 7.4: Results for 2500 rpm without heat exchanger

Table 7.5: Results for 1000 rpm with heat exchanger 10 cm

Table 7.6: Results for 1500 rpm with heat exchanger 10 cm

Table 7.7: Results for 2000 rpm with heat exchanger 10 cm

Table 7.8: Results for 2500 rpm with heat exchanger 10 cm

Table 7.9: Results for 1000 rpm with heat exchanger 20 cm

Table 7.10: Results for 1500 rpm with heat exchanger 20 cm

Table 7.11: Results for 2000 rpm with heat exchanger 20 cm

Table 7.12: Results for 2500 rpm with heat exchanger 20 cm

Table 7.13: Results for 1500 rpm with heat exchanger 30 cm

Table 7.14: Results for 2000 rpm with heat exchanger 30 cm

Table 7.15: Results for 2500 rpm with heat exchanger 30 cm

Table 7.16: Results for effectiveness of heat exchanger 10 cm

Table 8.1: Results for effectiveness of heat exchanger 10 cm
Table 8.2: Results for effectiveness of heat exchanger 20 cm

Table 8.3: Results for effectiveness of heat exchanger of 30 cm

Table 8.4: Comparison enthalpy and COP for 1000 rpm

Table 8.5: Comparison enthalpy and COP for 1500 rpm

Table 8.6: Comparison enthalpy and COP for 2000 rpm

Table 8.7: Comparison enthalpy and COP for 2500 rpm

Table 8.8: Comparison COP with three different heat exchanger

Table 8.9: COP improving using the heat exchanger.

Table 8.10: Comparison of fuel consumption for three sizes heat exchanger
CHAPTER 1

INTRODUCTION

1.1 Background Study

Heat exchangers are common components in many everyday devices. Car engines, refrigerators, air conditioners, central heating boilers and radiators all contain heat exchangers. They are devices specifically designed for the efficient transfer of heat from one fluid to another fluid over a solid surface. This transfer of heat can either take the form of absorption or dissipation of heat. As a heat transfer device, it is the function of a heat exchanger to transfer heat as efficiently as possible. This makes it the ultimate device of choice, for instance, when it comes to saving energy by recovering wasted heat and making it useful again. When there is a waste of energy or a heat stream that is not recovered a heat exchanger can covert that heat stream into something that can be used.

1.2 Problem Statement

Heat exchangers are widely used in industry both for cooling and heating large scale processes. Heat exchanger commonly applies in heating, ventilation and air conditioning (HVAC) systems, radiators, boilers and others. Heat exchanger can be added in the car air conditioning systems. With existed of heat exchanger, it will reduce the pressure drops in the air conditioning systems.
1.3 Objectives

i. To understand basic concept of car air conditioning system.

ii. To learn effect of different lengths heat exchanger to temperature and pressure in term of Coefficient of Performance (COP).

iii. To study effect heat exchanger on car fuel consumption.

1.4 Scope

This project is to study the effect of heat exchanger on car air conditioning system. The experiment will be conducted with different lengths of heat exchanger correlate with temperature and pressure. Also, the experiment will be conducted to determine effect of the fuel consumption with adding the heat exchanger into the car air-conditioning system. All the experiment will use Proton Wira’s car air-conditioning system.
2.1 Introduction

Heat exchanger is a device built for efficient heat transfer from one medium to another, whether the media are separated by solid wall so that they never mix, or the media are in contact. Heat exchanger widely used in refrigeration, air conditioning, power plants, space heating, and natural gas processing. One common example of a heat exchanger is the radiator in car, which the heat source, being a hot engine-cooling fluid, water transfers heat to air flowing through the radiator.

2.2 Flow Arrangement

Heat exchangers may classify according to their flow arrangement. In parallel-flow heat exchangers, the two fluids enter the exchanger at the same end, and travel in parallel to one another to the other side. In counter-flow heat exchangers the fluids enter the exchanger from opposite ends. The counter current design is most efficient, in that it can transfer the most heat from the heat (transfer) medium. In a cross-flow heat exchanger, the fluids travel roughly perpendicular to one another through the exchanger.
For efficiency, heat exchangers are designed to maximize the surface area of the wall between the two fluids, while minimizing resistance to fluid flow through the exchanger. The exchanger's performance can also be affected by the addition of fins or corrugations in one or both directions, which increase surface area and may channel fluid flow or induce turbulence.

2.3 Types of Heat Exchanger

2.3.1 Shell and tube heat exchanger

From the Figure 2.1, shell and tube heat exchangers consist of a series of tubes. One set of these tubes contains the fluid that must be either heated or cooled. The second fluid runs over the tubes that are being heated or cooled so that it can either provide the heat or absorb the heat required. A set of tubes is called the tube bundle and can be made up of several types of tubes: plain, longitudinally finned, etc. Shell and Tube heat exchangers are typically used for high pressure applications. This is because the shell and tube heat exchangers are robust due to their shape. There are several thermal design features that are to be taken into account when designing the tubes in the shell and tube

Figure 2.1: Shell and Tube Heat Exchanger
(Source: http://www.ra.danfoss.com/TechnicalInfo)
heat exchangers. These include tube thickness, tube diameter, tube length, tube pitch and tube layout.

2.3.2 Plate heat exchanger

Figure 2.2: Conceptual diagram of a plate and frame heat exchanger.
(Source: http://en.wikipedia.org/wiki/heat_exchanger)

Figure 2.3: A single plate heat exchanger
(Source: http://en.wikipedia.org/wiki/heat_exchanger)