Design and development of robot interface for controlling 6 DC motor using Visual Basic / Abu Ubaidah Abdul Aziz.
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF ROBOT INTERFACE FOR CONTROLLING 6 DC MOTOR USING VISUAL BASIC

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic and Automation) with Honours.

by

ABU UBAIDAH BIN ABDUL AZIZ

FACULTY OF MANUFACTURING ENGINEERING
2009
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF ROBOT INTERFACE FOR CONTROLLING 6 DC MOTOR USING VISUAL BASIC

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic and Automation) with Honours.

by

ABU UBAIDAH BIN ABDUL AZIZ

FACULTY OF MANUFACTURING ENGINEERING
2009
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PSM

JUDUL:
Design and Development of Robot Interface for Controlling 6 DC Motor using Visual Basic

SESi PENGAJIAN: Semester 2 (2008/2009)

Saya ABU UBAIDAH BIN ABDUL AZIZ mengaku membenarkan laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
4. *Sila tandakan (√)
 □ SULIT (Mengandungi maklumat yang berderajat keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
 □ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dilakukan)
 □ TIDAK TERHAD

(ABU UBAIDAH B. ABDUL AZIZ)
Alamat Tetap:
925-B, Kg. Dato Bentara Luar,
Jln Temenggong Ahmad,
84000 Muar, Johor

(SYAMIMI BINTI SHAMSUDDIN)
Cop Rasmi:
SYAMIMI BINTI SHAMSUDDIN
Pensyarah
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka

Tarikh: 12 MEI 2009

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
Pustakawan
Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM)
Taman Tasik Utama, Hang Tuah Jaya,
Ayer Keroeh, 75450, Melaka

Saudara,

Sekian dimaklumkan. Terima kasih.

“BERKHIDMAT UNTUK NEGARA KERANA ALLAH”

Yang benar,

SYAMIMI BINTI SHAMSUDDIN
Pensyarah,
Fakulti Kejuruteraan Pembuatan
DECLARATION

I hereby, declared this report entitled “Design and Development of Robot Interface for Controlling 6 DC Motor using Visual Basic” is the results of my own research except as cited in references.

Signature : ..
Author’s name : AMU UBAIDAH B. ABUL AZIE
Date : DD MAY 2009
APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours. The members of the supervisory committee are as follow:

(Signature of Supervisor)

(Official Stamp of Supervisor)

SYAMIMI BINTI SHAMSUDDIN
Pensyarah
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka
APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours. The members of the supervisory committee are as follow:

(Signature of Principal Supervisor)

(Official Stamp of Principal Supervisor)

(Signature of Co-Supervisor)

(Official Stamp of Co-Supervisor)
ABSTRACT

The aim of this project is to design and develop appropriate robot interface using Visual Basic.NET to control six DC motors. The motors will be controlled via computer without direct interaction with a robot pendant. This project has been divided into two stages. The first stage consists of theory of the project such as research on the types of motors that can be used, software package in creating the interface and programming, the controller and the interface. The second stage involves on the design and development of the interface and controller. Programming stage involves two different softwares. Visual Basic.NET programming is used as an interface to control the motor movement while the MikroC is used to program the PIC microcontroller for the PIC to communicate with the Visual Basic.NET programming. Motor controller communicates with PC to control the motors in clockwise and counterclockwise direction through the Visual Basic.NET interface. In addition the controller is also able to control the speed of the motor. Testing is done to verify that the motor controller and the interface can communicate with each other. The interface can communicate with the PIC but not able to move the DC motors to go either forward or reverse. Two objectives had been achieved in this project that is designing and developing a robot interface for controlling 6 DC motor using Visual Basic.NET and constructing electrical circuit to control the DC motor. One objective is not achieved that is to interface the Visual Basic.NET program and motor and program the PIC to achieve controlling 6 DC motor using Visual Basic.NET.
ABSTRAK

DEDICATION

To my supervisors, Mr. Muhamad Arfauz bin A Rahman, Puan Syamimi binti Shamsuddin and lecturers. Not forgotten to my parents, Abdul Aziz bin Zahari and Nik Azizon binti Wan Kadir, and to all my friends.
ACKNOWLEDGEMENT

Firstly, I would like to thank God for the strength, patient and guidance in finished up this project. I also would like to thanks my supervisors, Mr. Muhamad Arfauz bin A Rahman and Puan Syamimi binti Shamsuddin that have give a lot of guidance, knowledge and support for my project.

I also would like to take this chance to thank En. Muhamad Afifi, the programmer in CAIRO because has spent a time to guide me to complete my project.

Last but not least, to my parents, Abdul Aziz bin Zahari and Nik Azizon binti Wan Kadir, and friends for their support.
TABLE OF CONTENT

Abstract i
Abstrak ii
Dedication iii
Acknowledgement iv
Table of Content v
List of Tables viii
List of Figures ix
List of Abbreviations xii

1. INTRODUCTION 1
1.1 Background 1
1.2 Objectives 2
1.3 Scope 3
1.4 Problem Statement 3
1.5 Benefits 3
1.6 Project Outline 4

2. LITERATURE REVIEW 5
2.1 Types of Motor 5
2.1.1 AC Motors 5
2.1.2 DC Motors 6
2.1.3 Stepper Motors 14
2.1.4 Servo Motors 14
2.2 Robot 15
2.3 Interface 16
2.4 Software Package 18
2.4.1 Visual Basic.NET 18
2.4.2 Java Programming 20
2.4.3 C Programming
2.4.4 C++ Programming
2.4.5 C# Programming
2.5 Controller
2.6 Concluding Rework
2.7 Similar Past Project
2.7.1 Direct Torque Control for Induction Motor Using Fuzzy Logic
2.7.2 An Inexpensive AVR Controlled 16-Channel Serial Servo Motor Controller Design for Robotic Application

3. RESEARCH METHODOLOGY
3.1 Project Planning Flowchart
3.2 First Stage of Project: PSM 1
3.3 Second Stage of Project: PSM 2
3.4 Flowchart for Interface Development
3.5 Flowchart for Motor Controller Development
3.6 Flowchart for Connection of PC (Interface) with Motor Controller

4. DESIGN AND DEVELOPMENT
4.1 Motor and Software Selection
4.1.1 DC Motor Selection
4.1.2 Software Package Selection
4.2 Motor Controller Circuit
4.2.1 Electronic Components
4.2.2 Circuit Design
4.2.3 Mechanical Design
4.2.4 PIC Programming
4.3 Interfacing
4.3.1 Interface Development
4.3.2 Interface Programming
4.4 Computer (Interface), Motor Controller and DC Motor Connection
5. TESTING, RESULT AND DISCUSSION

5.1 Testing
5.1.1 Interface (Visual Basic.NET)
5.1.2 Motor Controller Circuit
5.1.3 Project Testing
5.2 Result
5.2.1 Interface (Visual Basic.NET)
5.2.2 PIC Programming
5.2.3 Motor Controller Circuit
5.2.4 Project Testing
5.3 Discussion
5.3.1 Interface (Visual Basic.NET)
5.3.2 PIC Programming
5.3.3 Circuit Development
5.3.4 Project Testing

6. CONCLUSION AND FURTHER WORK

6.1 Conclusion
6.2 Further Work

REFERENCES

APPENDICES
A Direct Torque Control for Induction Motor Using Fuzzy Logic
B An Inexpensive AVR Controlled 16-Channel Serial Servo Motor
 Controller Design for Robotic Application
C Motor Specification
D Motor Controller Circuit Diagram
E Interface Programming (Visual Basic.NET)
F PIC Programming
LIST OF TABLES

2.1 The Advantages and Disadvantages of AC, DC, Stepper and Servo Motor 25
2.2 The Advantages and Disadvantages of Visual Basic .NET, Java, C, C++ and C# Programming 27

4.1 Quantity of Materials 42
4.2 DC geared motor specifications 43
4.3 I/O pins for port A, B, C, D and E 44
4.4 9 Pin Serial Port Functions 46
4.5 Explanation of Circuit Development Using Protel DXP Software 49
4.6 Electronic Components Functions 50
4.7 Description for The Tools in Interface 59
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Connection Between PC, Motor Controller and DC Motor</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Simplified Model for Computer Control (PromoChorm Technologies Ltd.)</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>AC Motor (Leroy Somer Company)</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>DC Motor (Cytron Technologies Sdn Bhd.)</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>(A) DC motor, (B) Field Coils in a Shunt Wound, and (C) Armature</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>DC Series Motor (Ningbo Chenper Manufacture & Trade Company)</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>A DC Series Motor Schematic and Wiring Diagram (Electrical/Electronic Systems book)</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>DC Shunt Motor (Baldor Electric Company)</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>A DC Shunt Motor Schematic and Wiring Diagram (Electrical/Electronic Systems book)</td>
<td>11</td>
</tr>
<tr>
<td>2.8</td>
<td>DC Compound Motor (CMACMA Technologies)</td>
<td>12</td>
</tr>
<tr>
<td>2.9</td>
<td>DC Compound Motor Schematic and Wiring Diagram (Electrical/Electronic Systems book)</td>
<td>12</td>
</tr>
<tr>
<td>2.10</td>
<td>DC Permanent-magnet Motor (Baldor Electric Company)</td>
<td>13</td>
</tr>
<tr>
<td>2.11</td>
<td>Stepper Motor (Cytron Technologies Sdn. Bhd.)</td>
<td>14</td>
</tr>
<tr>
<td>2.12</td>
<td>Servo Motor (Hitec RCD USA Company)</td>
<td>15</td>
</tr>
<tr>
<td>2.13</td>
<td>ABB IRB 140 robot (ABB Company)</td>
<td>16</td>
</tr>
<tr>
<td>2.14</td>
<td>Example of User Interface</td>
<td>17</td>
</tr>
<tr>
<td>2.15</td>
<td>Visual Basic .NET Workspace</td>
<td>19</td>
</tr>
<tr>
<td>2.16</td>
<td>Java Programming Workspace</td>
<td>20</td>
</tr>
<tr>
<td>2.17</td>
<td>C/C++/C# Programming Workspace</td>
<td>23</td>
</tr>
<tr>
<td>2.18</td>
<td>Example of Motor Controller (Robot Store Company)</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Project Planning Flowchart</td>
<td>32</td>
</tr>
</tbody>
</table>
3.2 First Stage Flowchart: PSM 1 34
3.3 Second Stage Flowchart: PSM 2 35
3.4 Flowchart for Interface Development 36
3.5 Flowchart for Motor Controller Development 38
3.6 Connection Between PC (Interface), Motor Controller and DC Motor 39

4.1 DC Geared Motor 43
4.2 PIC 16F877A Diagram 44
4.3 L293D Motor Driver Diagram 45
4.4 MAX232 Diagram 46
4.5 9 Pin Serial Port Connector 46
4.6 Protel DXP Workspace 47
4.7 Wiring Toolbar 48
4.8 Circuit Design Using Protel DXP 48
4.9 Motor Controller Circuit 49
4.10 3 Pin Power Adaptor 51
4.11 Setup “Device” and “Clock” 52
4.12 Flowchart of the PIC program 53
4.13 Programming for The Initialize Pin Been Used 54
4.14 Programming for Serial Port using USART 54
4.15 Programming for Controlling Motor Movement 55
4.16 Programming for Communicate With Visual Basic.NET 55
4.17 Successful Programming Notification Message Box 55
4.18 USB ICSP PIC Programmer and UIC00A Socket 56
4.19 PICkit 2 Programmer 57
4.20 New Project Window 58
4.21 Interface 59
4.22 Flowchart of the interface in Visual Basic.NET 61
4.23 Serial Port Programming 62
4.24 Motor ON and OFF When Button Was Pushed and Released 62
4.25 Motors Always ON When Checkbox is Selected 63
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.26</td>
<td>Speed Control Programming</td>
<td>63</td>
</tr>
<tr>
<td>4.27</td>
<td>USB to RS-232 Adapter</td>
<td>64</td>
</tr>
<tr>
<td>5.1</td>
<td>Checking COMport Been Connected</td>
<td>66</td>
</tr>
<tr>
<td>5.2</td>
<td>Interface After Debugged</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>Checking Using Multimeter</td>
<td>68</td>
</tr>
<tr>
<td>5.4</td>
<td>Connection Between Computer, Motor Controller and DC Motor</td>
<td>68</td>
</tr>
<tr>
<td>5.5</td>
<td>Port Connected and Disconnected</td>
<td>69</td>
</tr>
<tr>
<td>5.6</td>
<td>Value Appeared After Scrolling The Scroll Bar</td>
<td>69</td>
</tr>
<tr>
<td>5.7</td>
<td>Turn On and Off The Motors</td>
<td>70</td>
</tr>
<tr>
<td>5.8</td>
<td>LED Turned On</td>
<td>70</td>
</tr>
<tr>
<td>5.9</td>
<td>DC Motors Connections</td>
<td>71</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PIC</td>
<td>Programmable Integrated Circuit</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>USART</td>
<td>Universal Serial Asynchronous Receiver Transmitter</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>UTeM</td>
<td>Universiti Teknikal Malaysia Melaka</td>
</tr>
<tr>
<td>VB.NET</td>
<td>Visual Basic.NET</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background

This project is aimed to design and develop appropriate robot interface for controlling six Direct Current (DC) motor using Visual Basic (VB) software. The outcome of this project can be used in controlling the motors via personal computer (PC) without direct interaction with robot pendant. Figure 1.1 show an example of connection between PC, motor controller and DC motor and the interface is expected to be user friendly and easy to connect with the current robot controller.

![Figure 1.1: Connection between PC, motor controller and DC motor](image)

Generally, the DC motor had been widely used in industry as in the robot arm and robot slider applications. The advantages of using the DC motor is the speed can be controlled and they have the ability to develop very high torque at low speed. The rotation of the motor also can be controlled clockwise ad counterclockwise. There are four basic types of DC motor as follows:

a) Series motor
b) Shunt motor
c) Compound motor
d) Permanent-magnet motor

Visual Basic.NET is the software package use for this project to develop a program for controlling the DC motor. VB.NET is the most popular language for develop programming because it is easy to use. The language not only allows programmers to create simple graphical user interface (GUI) applications, but can also develop complex applications as well.

Figure 1.2 explains about a simplified model for computer control for controlling the 6 DC motor. It starts with the user interface where users give instructions and read information from the control target through the user interface. The software in the computer will process the instructions and send it to the control/interface board through a communication port (serial/USB port). The control/interface board will interpret and execute the instructions according to a pre-written protocol. The instruction will be sent to the DC motor through the drive board/relay and other electronic components on the control/interface board.

![Figure 1.2: Simplified model for computer control (PromoChorm Technologies Ltd.)](image)

1.2 Aim and Objectives

This aim is achieved through these objectives:

a) To design and develop an interface for controlling 6 DC motor using Visual Basic.NET.
b) To construct electrical circuit to control the DC motor.
c) To interface the Visual Basic.NET program and motor and program the PIC (Programmable Integrated Circuit) to achieve controlling 6 DC motor using Visual Basic.NET.

1.3 Scope

This project is to design and develop appropriate robot interface for controlling 6 DC motor using Visual Basic.NET software. The robot interface will be a user friendly interface. The motor controller that been developed can control the angle and speed of the DC motor. This project is to understand the functionality and capability of the DC motor. It is also to understand the application of Visual Basic as the interface.

1.4 Problem Statement

In industry, the robot or motors is inclined controlled and programmed using the control pendant. Using the control pendant, the motors had to be controlled in a close range. In this project, the DC motor can be controlled via PC without direct interaction with control pendant. The advantage is the speed of each motors can be controlled and the program can be changed easily.

1.5 Benefits

The potential benefit of this project is the DC motor can be controlled via PC without direct interaction with control pendant.
1.6 Project Outline

GANTT CHART FOR PROJECT SARJANA MUDA 1 AND 2

<table>
<thead>
<tr>
<th>PSM 1</th>
<th>WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECTION OF CHAPTER</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>OBJECTIVE, SCOPE, BACKGROUND</td>
<td></td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>REPORT WRITING</td>
<td></td>
</tr>
<tr>
<td>SEMINAR</td>
<td></td>
</tr>
<tr>
<td>DESIGN, DEVELOP, TROUBLESHOOT CIRCUIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAKING PROGRAMMING</td>
<td></td>
</tr>
<tr>
<td>REPORT SUBMISSION</td>
<td></td>
</tr>
<tr>
<td>PRESENTATION</td>
<td></td>
</tr>
</tbody>
</table>

PSM 2	ACTUAL											
DEVELOP VISUAL BASIC.NET	PLAN											
PROGRAM THE MICROCONTROLLER	ACTUAL											
PLAN												
DESIGN CIRCUIT	ACTUAL											
PLAN												
CONSTRUCT CIRCUIT	ACTUAL											
PLAN												
TROUBLESHOOT CIRCUIT	ACTUAL											
PLAN												
CONNECTING THE INTERFACE WITH MOTOR	ACTUAL											
PLAN												
REPORT WRITING	ACTUAL											
PLAN												
REPORT SUBMISSION	ACTUAL											
PLAN												