BORANG PENGESAHAN STATUS TESIS

JUDUL: **IMPLEMENTATION OF NETWORK RENDERING FARM**

SESJI PENGAJIAN: **2009/2010**

Saya **SITI RASHIDAH BINTI MISHORIM @ MISROHIM**

(HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Teknikal Malaysia Melaka
2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja
3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (/) (Mengandungi maklumat yang berdasar keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)**

______ SULIT

______ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

_____/____ TIDAK TERHAD

(TANDATANGAN PENULIS)

(Pn. Zaheera Binti Zainal Abidin)

Alamat tetap: Lot 1556, Batu 3, Kg Sg Kandis, Seksyen 36, 40460 Shah Alam, Selangor Darul Ehsan.

Tarihk: **24 JUNE 2010**

CATATAN: * Tesis dimaksudkan sebagai Laporan Akhir Projek Sarjana Muda (PSM)
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa.
DECLARATION

I hereby declare that this project report entitled

IMPLEMENTATION OF NETWORK RENDERING FARM

is written by me and is my effort and that no part has been plagiarized without citations.

STUDENT: ___________________________ Date: 24 JUNE 2010
(SITI RASHIDAH BT MISHORIM@MISROHIM)

SUPERVISOR: _________________________ Date: 24 JUNE 2010
(PN. ZAHEERA BT ZAINAL ABIDIN)
DEDICATION

To my beloved parents, your love and support are my greatest and my motivation.

To my friends, for your support and encouragement.

To my lecturer, for being respective and critical, and challenging me to be better student.
ACKNOWLEDGEMENTS

Alhamdulillah and thanks to Almighty Allah, I am very pleased and grateful of being able to finish my final project. First and foremost, I would like to thank my beloved parents and my family for their support and motivation throughout my project.

I would like to express my gratitude to my supervisor, Pn. Zaheera bt. Zainal Abidin, for her understanding and patience, added considerable to my success of completing this project. I appreciate her vast knowledge and skills in many areas and her guidance in writing and completing this report.

I also expressed my appreciations to my friends in and outside UTeM for their exchanges of knowledge, skills, and venting of frustration while completing my final project which helped enrich my experience. Although, I would like to thanks for many people that have contributed and helped to complete this project. I take sole responsibility for errors. Wassalam.
ABSTRACT

Network Rendering Farm is one of the services in 3D rendering and animation in the network environment. It is a process of having multiple networked machines, working simultaneously, which the render server/master distributed the individual frames of an animation or 3D applications to number of render nodes/slaves, in reducing the amount of processing time. Network rendering farm use distributed rendering method because it allowed all render node to render the job. The frame that to be rendered is divided into small regions (buckets) and give each render nodes to render a number of them which then get the result and combine them into the final image. The final image result can be seen in render server/master. The network rendering farm service is implementing in IPv4 network environment. This service also uses different operating systems which is Ubuntu and Windows XP. Blender is used as software in render server to make 3D or animation. It is build with Visual C++ 2008 SP1 Redistribution Package (x64) and Python as script and language. Farmerjoe will be used also in render server as an engine for Blender software to send the jobs that ready to be rendering to the render node. Farmerjoe allowed many jobs to be sent for rendering and the jobs will start automatically after the other jobs are finished. As a result, the rendering time can be reduced by using more computers in network environment.
Abstrak

Network Rendering Farm merupakan satu perkhidmatan 3D dan animasi dalam persekitaran rangkaian. Ia adalah proses yang mempunyai beberapa mesin rangkaian, bekerja secara serentak, yang mana server / master membagahkan frame individu aplikasi 3D atau animasi kepada render node/slave, dalam mengurangkan masa bagi proses render. Network Rendering Farm menggunakan kaedah pengagihan rendering kerana membolehkan semua render node untuk melakukan kerja. Frame yang akan di render dibahagikan menjadi kecil(bucket) dan diaghikan kepada setiap render node yang mana hasil akhir akan digabungkan dan boleh dilihat melalui server/master. Perkhidmatan ini dibangunkan di dalam rangkaian IPv4. Perkhidmatan ini juga menggunakan sistem pengoperasian yang berbeza iaitu Ubuntu dan Windows XP. Blender digunakan sebagai perisian dalam perkhidmatan ini. Ia turut dibangunkan beserta dengan skrip Visual C ++ 2008 SP1 Package (x64) dan Python. Farmerjoe juga turut digunakan sebagai mesin kepada perisian Blender untuk menghantar kerja yang sedia untuk di render kepada render node. Farmerjoe membolehkan penghantaran kerja secara banyak dilakukan dan akan bermula secara automatik setelah kerja yang terdahulu selesai. Kesimpulannya, masa bagi rendering dapat dikurangkan dengan menggunakan lebih banyak komputer dalam persekitaran rangkaian.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER I

INTRODUCTION

1.1 Project Background 1
1.2 Problem Statement 2
1.3 Objectives 3
1.4 Scope 4
1.5 Project Significance 5
1.6 Expected Output 5
1.7 Conclusion 6
CHAPTER II LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction 7
2.2 Literature Review 7
 2.2.1 Domain 7
 2.2.2 Keyword 8
 2.2.3 Previous Research 9
 2.2.3.1 Down on the Farm (Network Rendering and Autodesk Backburner) 9
 2.2.3.2 An Open Source Grid Based Render Farm for Blender 3D 11
2.3 Proposed Solution 15
 2.3.1 Project Methodology 15
2.4 Project Schedule and Milestone 18
2.5 Conclusion 19

CHAPTER III ANALYSIS

3.1 Introduction 20
3.2 Problem Analysis 20
 3.2.1 Network Architecture 21
 3.2.2 Logical and Physical Design 21
 3.2.2.1 Logical Design 22
 3.2.2.2 Physical Design 23
3.3 Requirement Analysis 23
 3.3.1 Quality of Data 24
 3.3.1.1 Article 24
 3.3.1.2 Software Requirements 24
 3.3.1.2.1 Windows XP 24
 3.3.1.2.2 Ubuntu 24
3.3.1.2.3 Blender 25
3.3.1.2.4 Farmerjoe 25
3.3.1.2.5 Phyton 25
3.3.1.2.6 Visual C++ 2008 26
3.3.1.3 Hardware Requirement 27
 3.3.1.3.1 Cisco Switch 2690 27
 3.3.1.3.2 Cable 27
3.3.1.4 Network Requirements 27
3.4 Conclusion 28

CHAPTER IV DESIGN

4.1 Introduction 29
4.2 Possible Scenarios 29
 4.2.1 IPv4 Scenario 30
4.3 Conclusion 31

CHAPTER V IMPLEMENTATION

5.1 Introduction 32
5.2 Network Configuration Management 33
 5.2.1 Configuration Environment Setup 33
 5.2.1.1 OS/Platform Configuration 33
 5.2.1.1.1 Windows XP 33
 5.2.1.2 Ubuntu 36
 5.2.1.2 Render Tools Configuration 37
 5.2.1.2.1 Blender 37
 5.2.1.2.2 Farmerjoe 38
5.3 Hardware Configuration Management 42
 5.3.1 Hardware Setup 42
5.4 Development Status 43
5.5 Conclusion 43

CHAPTER VI

TESTING

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>44</td>
</tr>
<tr>
<td>6.2</td>
<td>Test Plan</td>
<td>44</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Test Organization</td>
<td>45</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Test Environment</td>
<td>45</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Test Schedule</td>
<td>45</td>
</tr>
<tr>
<td>6.3</td>
<td>Test Strategy</td>
<td>46</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Classes of Test</td>
<td>47</td>
</tr>
<tr>
<td>6.4</td>
<td>Test Design</td>
<td>47</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Test Description</td>
<td>48</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Test Data</td>
<td>49</td>
</tr>
<tr>
<td>6.5</td>
<td>Test Result and Analysis</td>
<td>56</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusion</td>
<td>57</td>
</tr>
</tbody>
</table>

CHAPTER VII

PROJECT CONCLUSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Observation On Strengths and Weaknesses</td>
<td>58</td>
</tr>
<tr>
<td>7.2</td>
<td>Propositions for Improvement</td>
<td>58</td>
</tr>
<tr>
<td>7.3</td>
<td>Contribution</td>
<td>59</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion</td>
<td>59</td>
</tr>
</tbody>
</table>

REFERENCES 60
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Comparison Between Different Available Render Farms</td>
<td>9</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Project Schedule</td>
<td>23</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Platforms IPv4 Network Address</td>
<td>23</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Test Schedule for Network Connection</td>
<td>31</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Test Schedule Render Server/Master and Render Nodes/Slaves</td>
<td>31</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Classes of Testing</td>
<td>32</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Test Network Connection between the Workstations</td>
<td>33</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Test Connection between the Render Server and Render Nodes</td>
<td>33</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Network Rendering Farm Work</td>
<td>33</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Network Rendering Farm Performance</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Architecture of the Open Source Blender Render</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Rendering Improvement of Grid over Single Computer</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The Process Model for Requirement Analysis</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Logical Design</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Physical Design</td>
<td>27</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>IPv4 Scenario</td>
<td>28</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Workgroup Interface</td>
<td>29</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Map Network Drive Interface</td>
<td>30</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Shared Directories</td>
<td></td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Shared Directories (R: Server\RenderFarm)</td>
<td>36</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Samba Configuration</td>
<td>37</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Blender Interface</td>
<td>38</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Farmerjoe Configuration</td>
<td>39</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Farmerjoe_submit and Farmerjoe_bucket</td>
<td>40</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Master Command</td>
<td>41</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Appserver Command</td>
<td>46</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Slave Command in Windows XP</td>
<td>47</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>Slave Command in Ubuntu</td>
<td>48</td>
</tr>
<tr>
<td>Figure 5.13</td>
<td>Farmerjoe Interface</td>
<td>49</td>
</tr>
<tr>
<td>Figure 5.14</td>
<td>Hardware Setup</td>
<td>50</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Render Server ping to Render Nodes</td>
<td>51</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Render Nodes ping to Render Server</td>
<td>52</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Render Server/Master in Windows XP</td>
<td>53</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Render Appserver in Windows XP</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6.5 Render Nodes/Slaves in Ubuntu
Figure 6.6 Render Nodes/Slaves in Windows XP
Figure 6.7 Farmerjoe Interface in the Web Browser
Figure 6.8 Send Job by using Blender
Figure 6.9 Rendering Process by Render Nodes
Figure 6.10 Jobs Status
Figure 6.11 Jobs Complete
Figure 6.12 Results of Network Rendering Farm Time Comparison
 with Number of Computers
CHAPTER I

INTRODUCTION

1.1 Project Background

Rendering is the process that involves in multimedia especially in animation and 3D. It is usually take a long time of processing to finish because it is done in one computer only. Nowadays, the rendering process can be done in multiple nodes and it is known as network rendering farm. The network rendering farm is the process of having multiple networked machines to render the individual frames of an animation in order to reduce the amount of time needed. There is render server or master and render node which also known as slave that involves in network rendering farm.

Network rendering farm use distributed rendering method because it allowed all render node to render the job. The frame that to be rendered is divided into small regions (buckets) and give each render node to render a number of them which then get the result and combine them into the final image. The final image result can be seen in render server/master.
divided the frame into a small to be rendered by the render node. It is allowed to check
the frame which already rendered to see its progressing while the other still going on. If
there any errors occurred, the job can be terminated and resubmit again. While waiting
the rendering finished, another job can be done simultaneously.

1.3 Objective

Currently, the rendering process not been implemented in network environment.
It processed only in one machine. The objectives to implement network rendering farm
services are:

i. Provide the services in network environment by implement and apply the
services using IPv4 addresses.

ii. Upgrade and increase the productivity and performance of rendering
process.

iii. Achieve a multiple simultaneous rendering frame rate.

iv. Established the network rendering farm in different platforms which are
Ubuntu and Windows XP.

v. Make the server node and the render node communicate successful.
The network rendering farm service is implementing in IPv4 environment. In fact, this service is implemented in different platform which is Ubuntu and Windows XP. This project ensures that the services worked and the communication between the render server and render node is successful.

1.2 Problem Statement

The rendering process usually is done in only one computer. Basically, the only one computer act as platform which use to make 3D and animation process and also act as a machine to make a rendering process. This usually takes a long time to complete and make the performance become slow.

There is only one job can be rendered in one time. After one job is finish, it is needed to be close to start or load another job to be render. It is done manually. The results of the job can be seen after the project is finished rendering process. If there is an error occurred, it is only can be know at the end of the process. To fix the error, the job needs to be rendering again.

The network rendering farm is use to solve the problems that happened before. It is implemented in network environment with more than one computer which have render server and render node to do the rendering process. The 3D and animation process only involve in render server while the rendering process is done by the render node. This made the performance become faster and reduce the rendering time.

Moreover, this service allowed many jobs to be rendering in a time. The new job is start automatically after one job is finished. This service also has render queue which
1.4 Scope

The scopes involved in this project are:

- This project is carried out in the lab where the service is tested in real-environment using three workstations as server and a client that connected to each other using a Cisco switch and connected to a Cisco router in the same network.

- For the render server, it runs in Windows XP Operating System. The server contains software Blender-2.49b which includes Python 2.6 and Visual C++ 2008 SP1 Redistribution Package (x64). To render the job, the server needs Farmerjoe_0.1.3.

- For the render node, it runs in Windows XP and Ubuntu 9.04 Operating System. The nodes also contain software Blender-2.49b which is the configuration is same as the render server. To receive the job from the server, the nodes copied Farmerjoe_0.1.3 configuration in the server.

- The communication between the render server and the render node is using the Cisco Switch series 2960 in the same network environment.
1.5 Project Significance

Network rendering farm is a service that helped the 3D rendering and animation render process to be more easy and faster on the performances. It reduced the rendering time process and allows many jobs in time. From this service, user which normally people who involved in multimedia can save their time and make another animation or 3D.

This service is easy to use because user just needs to send their job to the server node and the server divided the job to the render node that in the same network. The complete job sent back to the server and user can view it to see the results.

The service also efficient where it allows many jobs in a time and queue the job to be render after the other job is complete. Besides, the user also can make the job that is in the rendering process to be in the paused condition if it necessary.

1.6 Expected Output

As an expected output, the network rendering farm service worked successfully so that the rendering time process can be reduced and give the best final result. The network rendering farm service was more efficient if it can be use to render many jobs in a time without requiring user to spend their time waiting for rendering process is completed.
The network rendering farm also was successfully communicate in different platforms which is Ubuntu and Windows XP that has been implemented in same network environment by using IPv4 addresses.

1.7 Conclusion

This project is mainly about implementation of network rendering farm in network environment. This project was undertaken using three pc’s, one as server and the other two as clients connected to each other using a switch. As the project carry out, comparison data was gather to determine that the network rendering farm is better than the old service. In the next chapter, it covered about the literature review and project methodology where it discussed about domain, keyword, previous research and project schedules and milestones.
CHAPTER II

LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction

In this chapter, both literature review and project methodology is discussed thoroughly for the project. Some journals, books and articles either in written form or online source is used as a cited overview about the current research for this project. As for the project methodology, a selected methodology was chosen based on the previous research and is carried out for the rest of the project activities until completion where it includes the techniques, hardware and software requirements that are used to develop the project.

2.2 Literature Review

2.2.1 Domain

Domain is the space or thing which is filled with some main features. In this project, domains that are related to this through the research and reference are network rendering farm, Farmerjoe_0.1.3, Blender-2.49 and IPv4 addresses.
2.2.2 Keyword

There are few terms that being used in this project which are:

I. IPv4 Addressing - The IPv4 address is a 32-bit binary address represented as dotted decimal where the decimal values ranging from 0-255.

II. Network rendering farm – One of the services where it main purposes is to speed up the rendering process in network environment.

III. FarmerJoe_0.1.3 – is a render farm implementation based on TCP/ IP connections to render Blender 3D models, it provides web based interface to schedule the jobs also the functionalities of Bucket based and frame based rendering facilities.

IV. Blender-2.49 - is an integrated application that enables the creation of a broad range of 2D and 3D content. Blender provides a broad spectrum of modeling, texturing, lighting, animation and video post-processing functionality in one package. Blender is one of the most popular Open Source 3D graphics applications in the world.

V. Ubuntu (9.04) - Ubuntu is a community developed operating system that is perfect for laptops, desktops and servers. Whether you use it at home, at school or at work Ubuntu contains all the applications you'll ever need, from word processing and email applications, to web server software and programming tools.

VI. Windows XP - Windows XP is an operating system produced by Microsoft for use on personal computers, including home and business desktops, laptops, and media centers. It was released in 2001. The name "XP" is short for "eXPerience."
2.2.3 Previous Research

A network rendering farm is a computer cluster built to render computer-generated imagery (CGI), typically for film and television visual effects, using off-line batch processing. Render farm is a service that involved in multimedia especially in 3D Renderings and Animations. Normally, the time for ‘rendering’ take too long to complete. This is because there is no network rendering is been using before.

Basically in the old concept of rendering only use a single computer to complete only one work of rendering complex animations. It may probably take many days to render single animation only. It also can only just complete one work of 3D and animations while there are still many works to do.

2.2.3.1 Down on the Farm (Network Rendering and Autodesk Backburner)

According to Gary M.Davis (2003, 2005 and 2006), the network rendering had been use and the new software called ‘Back burner’ was introduced on the mid of 2002. With the purchase of one copy or license, user can legally network render on up to 9,999 computers and they can be multi-processor. This means that one work can be handling by many computers. One computer takes charge on tasks for the rest of the computers to work on which is often called as a render farm. Besides, one computer started rendering a frame while the other can start to render another frame. This method of network rendering is known as distributed rendering which is the way of Backburner processes animation and composites.
There are many advantages of using and applying network rendering by using Backburner software which are:

I. The Render Queue – the biggest advantages of network rendering is render queue concept which is it allows to submit jobs and let the jobs manage by its own self. It is means that when one job had finish, the next will begin automatically. It is different if there is no network rendering had been use. Without a queue, it is needed to close the project that finished and create or load another to begin rendering the next one.

II. Revision – it is mean that the network rendering allow more version of the same animation in the same amount of time to be process. This will help to know and choose the best result for the frame. Besides, there only take a few times to complete the rendering process.

III. Sequential Files – network render allow frame to be arrange starting from zero. It helps the frame render in sequence. Besides, we can check and open the frame that already rendered to see its progressing while the other still going on. If there are any errors, the rendering process can be terminated and can be fixes out to resubmit the job again. There is no need to wait for the entire job to finish seeing the errors.

IV. Monitors and Logs – the rendering process can be monitored anywhere in the facility and diagnose its results, progress and shortcomings. It also helps in finding which computer is faster to render and can maximize the render farm’s efficiency. While the render log allow to identify which computer rendered bad frames.
2.2.3.2 An Open Source Grid Based Render Farm for Blender 3D

Blender 3D is an open source 3D authoring tool which use in the implementation of render farm management tool. Such an approach, it is very useful for embedding within a specific application area. The final system is about to move towards service orientation architecture where the services offered by three components which is Blender 3D, render farm management tool and Condor Grid. The Grid based render farm system includes set of functionalities and unique features which are not currently available in other solutions.

The aim for this project also to develop a 3D collaborative environment based on Grid and P2P infrastructure where user can collaboratively work on same 3D model. Usually, 3D artist can share their same graphics file and work in parallel to design a common model and animation when they are finished the stage of their job and can submit the jobs for rendering on the Grid, eliminate the need for dedicated render farm server.

Currently, there is a lot of research in the area of render farms for 3D applications which can be seen in the Table 2.1 below. Table 2.1 presents some of useful features which make the work different from others. These features are important as they allow the flexibility of deployment and cost effectiveness. An open source Grid based render farm tool that can be deployed on many platforms is very cost effective to end user.