DESIGN IMPROVEMENT ON A PRODUCT USING DFMA: INDUSTRIAL MACHINERY

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) with Honours.

by

MOHAMMED AZIZI BIN RUDY ABDULLAH

FACULTY OF MANUFACTURING ENGINEERING

2009
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design Improvement on a Product Using DFMA: Industrial Machinery

SESI PENGAJIAN: 2008/2009 Semester 2

Saya MOHAMMEED AZIZI BIN RUDY

mengaku membentuk Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan Laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (√) (Mengandungi maklumat yang berdaur keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

 □ SULIT

 √ TERHAD

 □ TIDAK TERHAD

 (TANDATANGAN PENULIS)

 (TANDATANGAN PENYELIA)

Alamat Tetap:
No. 223, Jalan Tun Hussein Onn,
Beverly Hills Estate
97000 Bintulu Sarawak.

Tarih: 14/5/09

Cop Rasm: ZULKARNAIN BIN MARJOM
Juruterapi Pengajar Kanan
Fakulti Kajiruran Pembantu
Universiti Teknikal Malaysia Melaka.

Tarih: 14/5/09

**Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.
FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref):
Rujukan Tuan (Your Ref):

Pustakawan Perpustakaan UTeM Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 75450, Melaka.

13 Mei 2009

Saudara,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD LAPORAN PROJEK SARJANA MUDA KEJURUTERAAN PEMBUATAN (MANUFACTURING DESIGN): MOHAMMEED AZIZI BIN RUDY

Sukacita dimaklumkan bahawa Laporan PSM yang tersebut di atas bertajuk “Design Improvement on a Product Using DFMA: Industrial Machinery” Mohon dikelaskan sebagai SULIT/TERHAD untuk tempoh LIMA tahun dari tarikh surat ini.

2. Hal ini adalah kerana IANYA MERUPAKAN PROJEK YANG DITAJA OLEH SYARIKAT LUAR DAN HASIL KAJIANNYA ADALAH SULIT.

Sekian dimaklumkan. Terima kasih.

Yang benar,

ZOLKARNAIN BIN MARJOM

ZOLKARNAIN MARJOM
Pensyarah,
Fakulti Kejuruteraan Pembuatan
DECLARATION

I hereby declare that this report entitled “Design Improvement on a Product Using DFMA: Industrial Machinery” is the results of my own research except as cited in references.

Signature :
Author’s Name : Mohammeed Azizi Bin Rudy
Date : 10 April 2009
APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) with Honors. The member of the supervisory committee is as follow:

[Signature]

ZULKARNAIN BIN MARJOM
Jurutera Pengajar Kanan
Fakulti Kajuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka
ABSTRACT

DFMA (Design for manufacture and assembly) method is one of the development fields that can produce high efficiency product by using Boothroyd Dewhurst software. The machinery product for this research is T8 pneumatic pump that are built with plastic material. This product was analyzed by DFMA method to reduce the parts assembly and cycle time with the DFA tool analysis. This project also aims to show the low cost of manufacture in order to obtain the suitable process and material with the DFM tool analysis. Through this analysis, research on the current design and standard dimension for T8 diaphragm pump was done by using Solid Work software. A series of analysis been performed on 4 type of new T8 pump design according to the suggestion of original analysis. Selections of the new improvise design from 4 proposing pump will be done by using the D.O.E technique. From this method each of this pump are categorized by its design and analyzed again by the same DFMA software. Finally, choose the best design of high index efficiency and low time assembly. The related tables and charts can be practically used for comparison on current and improvise pump, the chosen of improvise pump shows 14.8 of index efficiency that more than the original pump which is 7.8. And time for assembly pump are less and quicker for the improvise pump which shows 40% faster than the original pump. For the DFM analysis, term of low cost show that improvised pump was 45% was cheaper than the original T8 pump. And through the DFM tool, polypropylene was the suitable material for manufacturing purpose.
DFMA (Rekabentuk pemasangan dan pembuatan) adalah salah satu medan peneraju untuk membuat produk baru dengan efisensi yang tinggi dengan menggunakan perisian boothroyd dan Dewhurst. Mesin produk yang dikaji adalah T8 pam omboh yang diperbuat daripada bahan plastik. Produk ini dianalisis dengan menggunakan cara DFMA untuk mengurangkan pemasangan komponen dan kitaran masa dengan DFA analisis. Projek ini juga menfokuskan pengurangan kos untuk pembuatan bagi mendapatkan bahan dan proses yang bersesuaian dengan DFM analisis. Menerusi analisis ini, kajian di dalam reka bentuk dan ukuran T8 pam omboh yang asal dilakukan dengan menggunakan perisian Solid work. Siri analisis dilakukan untuk 4 jenis pam T8 reka bentuk yang baru dengan merujuk cadangan pengubahsuaian analisis. Pemilihan salah satu reka bentuk T8 pam yang baru dari pada 4 pam yang dicadangkan tadi dilakukan dengan menggunakan teknik D.O.E. Daripada cara ini, setiap pam akan dikategorikan dengan reka bentuk masing-masing dan dianalisis sekali lagi dengan menggunakan perisian DFMA. Dan pilih reka bentuk yang mempunyai index efisensi yang tinggi dan masa pemasangan yang sikit. Carta dan jadual boleh diguna untuk mempraktikkan perbandingan untuk pam asal dan pam yang telah dipilih, index efisensi bagi pam yang dipilih menunjukkan nilai 14.8 yang lebih tinggi daripada pam asalan iaitu 7.8. Dan masa bagi pemasangan pam adalah minima dan lebih cepat bagi pam yang telah diubah iaitu 40% lebih laju daripada pam asalan iaitu. Bagi analisis DFM, istilah harga bahan yang rendah menunjukkan pam yang digubah adalah bernilai 45% yang mana lebih murah daripada pam asal. Dengan menggunakan DFM, propylene merupakan bahan yang sesuai dengan tujuan pembuatan.
DEDICATION

Specially dedicated to my beloved father, Rudy Abdullah and my mother, Dayangku Siti Faridah and who are very concerns, understanding patient and supporting, thank you for everything to my supervisors, En. Zolkarnain Marjom, my sisters, brother and all my friends. The work and success will never be achieved without all of you.
ACKNOWLEDGEMENT

Thank to ALLAH to give me the strength to finish the PSM 1 and PSM 2 with successfully. For this moment, I want to give a trillion of thanks to Mr Zolkarnain bin Marjom for the support and guidance me to finish this project with the ideas, suggestions and discussions. Not forget to my beloved family for their continuous encouragement and support to finish this project. Finally, special thanks to all of my friends that help and support me when doing this project. Thank you very much.
TABLE OF CONTENT

Abstract

Abstrak

Dedication

Acknowledgment

Table of Content

List of Tables

List of Figures

List of Abbreviations

1.0 INTRODUCTION

1.1 Background

1.2 Problem Statement

1.3 Project Objectives

1.4 Scope of Projects

1.5 Outline chapter

2.0 LITERATURE REVIEW

2.1 Introduction

2.2 Overview of DFMA

2.2.2 Design for Assembly (DFA)

2.2.3 Design for Manufacture (DFM)

2.3 History of DFMA

2.4 DFMA and Concurrent Engineering

2.4.1 How DFMA

2.4.2 Why DFMA

2.5 Boothroyd Dewhurst method

2.6 Hitachi method
2.7 Lucas method 23
2.7.1 Functional analysis 24
2.7.2 Handling analysis 25
2.7.3 Fitting analysis 26
2.8 Differentiate of the DFA method 28
2.8.1 Boothroyd Dewhurst DFA evaluation 30
2.8.2 Lucas DFA evaluation 31
2.8.3 Summary of the DFA case study evaluations 33
2.8.4 Differentiate between Lucas and DFA (boothroyd dewhurst) 34
2.8.5 Journal for the relate DFMA Studies 36
2.9 Benefits of DFMA 41
2.10 The product to be developed 42
2.10.1 Overview of the Pump 42
2.10.2 T8 Air Operated Double Diaphragm Pump 43
2.10.3 Pump Operation 44
2.10.4 Part listing and materials 46
2.10.5 Limitation and advantages of air-operated pump 47
2.11 Summary 48

3.0 METHODOLOGY 49
3.1 Introduction 49
3.2 Project process flow 50
3.2.1 Define the objectives & problem statement 52
3.2.2 Data collection 52
3.2.4 Literature review 53
3.2.5 Design for assembly (DFA) 54
3.2.6 Design for Manufacture (DFM) 58
3.2.7 Analysis and Discussion 58
3.2.8 Conclusion 58
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>RESULT AND DISCUSSION</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Drawing of Original design</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>DFA Analysis for Original T8 Pump</td>
<td>64</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Structure Chart</td>
<td>64</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Assembly Procedure</td>
<td>67</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Worksheet</td>
<td>68</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Analysis and Summary</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>DFM Analysis for Original T8 Pump</td>
<td>74</td>
</tr>
<tr>
<td>4.5</td>
<td>Suggestion for Redesign</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Design of Experiment (D.O.E)</td>
<td>78</td>
</tr>
<tr>
<td>4.6.1</td>
<td>First Design</td>
<td>79</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Second Design</td>
<td>81</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Third Design</td>
<td>83</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Fourth Design</td>
<td>85</td>
</tr>
<tr>
<td>4.7</td>
<td>Improved Design</td>
<td>88</td>
</tr>
<tr>
<td>4.7.0</td>
<td>DFA Analysis for Improved T8 Pump</td>
<td>89</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Structure Chart</td>
<td>89</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Assembly Procedure</td>
<td>91</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Worksheet</td>
<td>92</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Analysis and summary</td>
<td>94</td>
</tr>
<tr>
<td>4.8</td>
<td>DFM Analysis for Improvised T8 Pump</td>
<td>96</td>
</tr>
<tr>
<td>4.9</td>
<td>Discussion</td>
<td>97</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Comparison of Cycle time</td>
<td>97</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Comparison of occurrence part product</td>
<td>99</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Comparison of DFM analysis</td>
<td>101</td>
</tr>
<tr>
<td>4.9.4</td>
<td>Influence of Changing Material</td>
<td>102</td>
</tr>
<tr>
<td>4.9.5</td>
<td>Comparison of DFMA analysis</td>
<td>104</td>
</tr>
<tr>
<td>4.9.6</td>
<td>Fundamental use of D.O.E into DFA method</td>
<td>106</td>
</tr>
<tr>
<td>4.10</td>
<td>Conclusion</td>
<td>107</td>
</tr>
</tbody>
</table>
5.0 CONCLUSION AND RECOMMENDATION 108
5.1 Conclusion 108
5.2 Recommendation 109

REFERENCES 110

APPENDICES
A Gantt chart for PSM 1 and PSM 2
B Worksheet for Original T8 Pneumatic Pump
C Suggestion for Redesign
D Second, Third and Fourth Design
E DFM (Design for Manufacture) analysis cost for Original T8 Pneumatic Pump
F DFM Concurrent Cost for Improvement T8 Pump
G Journal
LIST OF TABLES

2.0 Worksheet Boothroyd Dewhurst for Time and cost ... 21
2.1 Element of Hitachi Method .. 22
2.2 Data for the Original Pneumatic Piston Efficiency by BD method 30
2.3 Data for the Redesign Pneumatic Piston Efficiency by BD method 30
2.4 Data for the Original Pneumatic Piston Efficiency by Lucas method 31
2.5 Data for the Redesign Pneumatic Piston Efficiency by Lucas method 32
2.6 Comparison Mechanism of Lucas and BD ... 34
2.7 Differentiate between Two Method ... 35
2.8 Applicability of Lucas and BDI DFA Methods .. 35
2.9 Comparison result for hose reel ... 39
2.10 Limitation and advantages of the pump ... 47

4.1 List part of material for Original T8 Pump ... 58
4.2 Worksheet for Original T8 Pump .. 69
4.3 Analysis Result for Original T8 Pump ... 72
4.4 Data for DFM of Manifold, Discharge Elbow and Ball guide 75
4.5 Suggestion for Redesign ... 77
4.6 D.O.E Table ... 78
4.7 Executive summary of comparison design ... 87
4.8 Worksheet for New T8 Pump .. 92
4.9 DFA analysis result for Improved T8 pump ... 94
4.10 DFM analysis of Combination ‘manifold T-section discharge elbow 96
4.11 The total cycle time for original and improved T8 pump 99
4.12 The total cycle time for original and improved T8 pump 100
4.13 DFM analysis cost for original and redesign T8 pump 101
4.14 DFM cost of concurrent breakdown. ... 103
4.15 Cost for T8 pump .. 106
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Diaphragm pump</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>DFMA methodology</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Model of a generic process or productive system</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison between DFMA+CE and the Traditional Methods</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Flow chart of Boothroyd-Dewhurst DFA method</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Interrelation between the Cost and Production Volume</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Geometry of handling part</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Insertion part</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Two types of symmetry α angle and β angle</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>The overall process of Luca flow chart</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Manual Functional analysis from web</td>
<td>24</td>
</tr>
<tr>
<td>2.11</td>
<td>Manual handling analysis from web</td>
<td>25</td>
</tr>
<tr>
<td>2.12</td>
<td>Fitting analysis from web page’</td>
<td>26</td>
</tr>
<tr>
<td>2.13</td>
<td>Example of worksheet of Lucas overall analysis</td>
<td>27</td>
</tr>
<tr>
<td>2.14</td>
<td>Comparison between pneumatic piston design</td>
<td>29</td>
</tr>
<tr>
<td>2.15</td>
<td>Exploded view of old design hose reel</td>
<td>37</td>
</tr>
<tr>
<td>2.16</td>
<td>Exploded view of new design of hose reel</td>
<td>37</td>
</tr>
<tr>
<td>2.17</td>
<td>Survey on importance of reductions produced by DFMA</td>
<td>41</td>
</tr>
<tr>
<td>2.18</td>
<td>Example of T8 air-operated diaphragm pump</td>
<td>43</td>
</tr>
<tr>
<td>2.19</td>
<td>Pump Operation</td>
<td>44</td>
</tr>
<tr>
<td>2.20</td>
<td>Three type of check valve</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Process Flow Chart for PSM Execution</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of Data Collection</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>The Upper Part of Discharge Elbow and the Manifold T-Section</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>The Below Part of Discharge Elbow and the Manifold T-Section</td>
<td>54</td>
</tr>
</tbody>
</table>
3.5 Manual Assembly for Original Product Procedure
3.6 Sequence of Looping Analyze data
3.7 Flow to Choose Best Design Concept

4.0 Isometric View of Original T8 Pneumatic Diaphragm Pump
4.1 Dimensional Drawing of T8 Pneumatic Diaphragm Pump
4.2 Exploded View for Original T8 Pneumatic Diaphragm Pump
4.3 The structure chart of whole original part
4.4 The breakdown chart of time per product for original T8 pump
4.5 Isometric view of first T8 pump design
4.6 Exploded view of first redesign of T8 pump
4.7 New manifold and clamp part for first design
4.8 Isometric view of second T8 pump
4.9 Exploded view of second redesign pump
4.10 New manifold and Thread clamp for second design
4.11 Isometric view of third T8 pump design
4.12 Exploded view of 3rd design of T8 pump
4.13 New manifold and clamp part for third design
4.14 Isometric view of fourth T8 pump design
4.15 Exploded view of 4th design for T8 pump
4.16 New chamber and thread clamp for fourth design
4.17 Improved design of T8 pump
4.18 Form of the Vertical and horizontal assembly phase
4.19 The structure chart of whole part for improvise T8 pump
4.20 Executive DFA analysis summary of improvise T8 pump
4.21 Time per product assembly operations
4.22 Occurrence per product between two pumps.
4.23 DFM breakdown of cost per product of improved T8 pump
4.24 Bar of breakdown cost for original and improvise T8 pump
4.25 DFMA breakdown cost bar for original and improve T8 pump.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD</td>
<td>Boothroyd Dewhurst</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CAD/CAM</td>
<td>Computer Aided Design/ Computer Aided Manufacturing</td>
</tr>
<tr>
<td>CATIA</td>
<td>Computer Aided Three Dimensional Interactive Application</td>
</tr>
<tr>
<td>CE</td>
<td>Concurrent Engineering</td>
</tr>
<tr>
<td>DFA</td>
<td>Design for Assembly</td>
</tr>
<tr>
<td>DFM</td>
<td>Design for Manufacture</td>
</tr>
<tr>
<td>DFMA</td>
<td>Design for Manufacture and Assembly</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied Natural Gases</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>PSM</td>
<td>Projek Sarjana Muda</td>
</tr>
<tr>
<td>PVC</td>
<td>Poly Vinyl Chloride</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Backgrounds

In the industrial revolution, the manufacturing industry has been pursuing more intentionally on design and processing sector. Into this, learning from the automotive and aerospace which shows the higher level of technology that have give the understanding about the manufacturing operation and contribute to higher production of product at any industrial sector. The current trend is to incorporate this two manufacturing basic flow into one technique approach which will influence the product to be developed are more cost savings, with quality improvement, reduce lead time assembly and giving a short time to enter the market.

One of the techniques is using the DFMA methodology. The aim of DFMA is to maximize the use of manufacturing processes and minimize the number of components in an assembly or product (K.L. Edwards, 2002). The Boothroyd & Dewhurst DFMA system not just only gives the reduction in part count but also contribute the save labor, inventory, floor space, documentation and administration (Bettles, 1999). The DFMA can be done by two methods which is either the manual way or by the teamwork (concurrent engineering) among the engineer and working on with the different course of department which concentrate in develop of one target product. Boothroyd Dewhurst software is one the alternative tool design that will be used in managing the product development process on this report.
1.2 Problem statement

The role of DFMA in optimization of design efficiency, assembly and manufacturing has received much attention from many organizations. This new technique approach has been successfully proved by the industry such as Hitachi, Ford motor company and so on which shows capable in resolving the problem occur in their product. It have become the tool in identifying the part damage and the part which need to improvise, (K.L. Edwards, 2002).

In this project, a case study was carried out at the Liquefied Natural Gases (LNG) Petronas Plant which located at Bintulu Sarawak. The problem occurs when so much time to overhaul or making maintenance to this pump. This is because the pump consist many complicated part to be disassemble and assemble. Other problem occurs when two integrated parts of this pump shown the leakage water. This problem occur when the clamping part not secured tightly and resulted the low stabilize operative machine. To resolve this matter, this parts need to been replaced by the spay part, in the certain time this part will once again be broken. Not just only that, error that happen to this pump will affecting to the other connection machine and give troublesome for the worker to repair it.

The troubleshooting on the problem statement as the above are rely on:

a) Strength of two assembly part where from the DFMA methodology, this two part can be combine into one functionally part.

b) The unsuitable material where this matter should consider used the fundamental material with the other part component.

c) Old design in which the part assembles will giving the low efficiency and should be concentrating on its data of design efficiency.
1.3 Project Objectives

The aim of this project was to determine the product efficiency, maintenance and new design of drawing by employing the DFMA methodology and analyze it with the aids of DFMA Boothroyd software.

The specific objectives that will be discussed on analysis and discussion parts are as follows:

a) Propose several improvement designs by D.O.E method.

b) Increase the index efficiency.

c) Reduce the cycle time of the assembly process.

d) Suggest new material for improvement design to reduce the manufacturing cost.
1.4 Scope of project

In this project, a diaphragm pump will be analyzed using the DFMA software. The part to be studied shown as figure 1.1 below:

By using the DFA methodology, the part design from the above will be analyzed and simplified in its structure number of part. To simplify its design, this product can be easily to handle, insert and contain fewer number of necessity part. Thus, the final product will shows the fundamental of time for assembly and the index efficiency for the new design. While for the DFM area, it will shows the fundamental of material and cost estimate at the end of this project.
1.5 Outline Chapter

Chapter 1
In chapter 1, the report are detailing on definition of manufacturing design for assembly and design for manufacturing (DFMA), problem statement, targeting objective and the scope of project.

Chapter 2
In chapter 2, this stage will include the chosen journal. The scope will focus on the literature review of DFMA and the introduction of the diaphragm pump machine as the project proposal in PSM.

Chapter 3
In chapter 3, the outline will focus on the methodology method that include in this project.

Chapter 4
This chapter will outline the analysis and discussion of the pump machine base on material uses, procedure assembly that will be adopt by DFMA software. The second segment will show the technical drawing by the use of Solidwork software.

Chapter 5
In this chapter, final conclusion and recommendation work will be utilized.
CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

These chapters describe about the entire important element that is considered in the project and also describe the type of product proposal that will be discussed on the next chapter. All methods about related DFMA will be demonstrated in this chapter.

2.2 Overview of DFMA

Design for Manufacture and Assembly, or DFMA as it has become to be known, is now a widely accepted technique which this methodology can be found mostly use in the sector of manufacturing, automotive, and electrical industry. These new techniques have become the basic tool in the product improvement, (K.L Edward, 2002).

According to Luo T. H. et al., (2007), DFMA is a methodology, which goals are to develop the integration between design and manufacturing, to shorten lead time, to cut down product developing cycle, to decrease the product cost, to improve product quality and reliability, to increase productivity and to response quicker to customer requirements. DFMA is a systematic procedure for analyzing proposed designs from the perspective of assembly processes.
During new product development, combination team of engineers and management (mechanical engineer, electrical engineer, production engineer, sale people and management) to generate the product, has proven to lower the product cost, improve product quality and decrease the development time, (Boothroyd, G. et al., 2002).

From the design point of the view, DFMA can be comprised by 2 means, which is DFA (Design for Assembly) & DFM (Design for Manufacture). Design for Manufacture (DFM) is a systematic procedure to maximize the use of manufacturing processes in the design of components and Design for Assembly (DFA) is a systematic procedure to maximize the components of the design product to be effective in its efficiency design, the procedures are often combined as Design for Manufacture and Assembly (DFMA).