UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SEMI-AUTOMATED LEMON GRASS CUTTER

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic and Automation) with Honours

by

SHUKRI BIN ZAKARIA

FACULTY OF MANUFACTURING ENGINEERING
2009
SEMI-AUTOMATED LEMON GRASS CUTTER

SHUKRI BIN ZAKARIA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
BORANG PENGESAHAN STATUS LAPORAN PSM

JUDUL: “SEMI AUTOMATED LEMON GRASS CUTTER”

SESU PENGAJIAN: 2/2008-2009

Saya SHAUKRI BIN ZAKARIA

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. *Sila tandakan (✓)

☐ SULIT (Mengandungi maklumat yang berdarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

(TANDATANGAN PENULIS)

Disahkan oleh:

(TANDATANGAN PENYEYELA)

Alamat Tetap:
NO.2 KG PIDA 3, TUNJANG,
06000 JITRA,
KEDAH DARUL AMAN.

Tarikh: 18 MEI 2009

* Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby declare that this report entitled "SEMI-AUTOMATED LEMON GRASS CUTTER" is the result of my own research except as cited in the references.

Signature :
Author’s Name : Shukri Bin Zakaria
Date : 18 May 2009
APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation). The members of the supervisory committee are as follow:

(Pn Silah Hayati binti Kamsani)
Main Supervisor

Official Stamp and Date
SILAH HAYATI BINTI KAMSANI
Pensyarah
Fakulti Kejuruteraan Pembaikan
Universiti Teknikal Malaysia Melaka
Karung Berkunci 1200, Hang Tuah Jaya,
Ayer Keroh, 75450 Melaka.

(Pn Nur Aidawaty binti Rafan)
Co-Supervisor

Official Stamp and Date
NUR AIDAWATY BTE RAFAN
Pensyarah
Fakulti Kejuruteraan Pembaikan
Universiti Teknikal Malaysia Melaka
Karung Berkunci 1200, Hang Tuah Jaya,
Ayer Keroh 75450 Melaka.
ABSTRACT

The use of automation in agriculture is ordinary in industry, multiple automatic devices were used to ease and increase the manufacturing process and productivity of a product with help of the latest technology invention. Nowadays, there are numbers of cutter machine available in the market and designed in such a way to cut the vegetable or fruit to desired size. The semi-automated lemon grass cutter is designed to be used in Small Manufacturing Industries. Through this machine, it will be another alternative and help beside the workers to increase the output level of cut lemon grass and transformed a traditional system to be more efficient and systematic. The conveyor is used as medium to transport the lemon grass from feeder to the cutter by control of relay and limit switches. This machine is operated by one worker. By using this semi-automated machine, the fatigue cause by cutting process can be reduced and will help to optimize the productivity and indirectly reducing the dependence to worker.
ABSTRAK

ACKNOWLEDGEMENT

Thanks to The God the All Mighty because with His Blessing, I managed to complete my report for the final year project (PSM) involving the topic of semi-automated lemon grass cutter

Also, my appreciation to Mdm. Silah Hayati Kamsani, my supervisor who had enthusiastic support of this final project report revision. With her help and guidance I’m able to gain better understanding about report and project structures. Not forgotten Mdm. Nur Aidawaty binti Rafan for his kindness and support on project evaluation.

I would like to express the profound gratitude to my beloved family for incessant love and support in undergoing graduate study. They have contributed a lot by their continuous encouragement and understanding that made this research work possible.

Finally, I also would like to present my gratefully acknowledge to anybody who helped directly or indirectly in this report for their contribution in guidance me to finished this report completely.
TABLE OF CONTENTS

Abstract ... i
Abstrak ... ii
Acknowledgements ... iii
Table of Contents .. iv
List of Figures .. vii
List of Tables .. ix
List of Abbreviations, Symbols, Specialized Nomenclature............................... x

1. INTRODUCTION ... 1
 1.1 Problem Statement ... 2
 1.2 Objective and Scope .. 3
 1.2.1 Objective .. 3
 1.2.2 Scope .. 3

2. LITERATURE REVIEW ... 5
 2.1 Background ... 5
 2.2 Actuator ... 5
 2.2.1 Electric Motors .. 7
 2.2.1.1 DC Motor .. 8
 2.2.1.2 AC Motor .. 9
 2.2.1.3 Stepper Motor ... 10
 2.3 The Motor Control ... 11
 2.3.1 Electronic DC Motor Control .. 11
 2.3.2 Automatic Motor Control ... 12
 2.3.2.1 Classification of Automatic Controller. 12
 2.3.3 Relay and Contactor .. 13
 2.3.3.1 Electromechanical Relays ... 13
2.3.3.2 Reed Relays 14
2.3.3.3 Solid-State Relay 15

2.5 Feeders and Orientation Systems 16

2.5.1 Feeder Systems 18
2.5.1.1 Cylindrical Part 18
2.5.1.2 U-Shape Part 22
2.5.1.3 Disk Shape Part 22

2.5.2 Orientation Systems 24
2.5.2.1 Rivet 24
2.5.2.2 Washer 25
2.5.2.3 Bottle Cap 25

2.7 Switch 26

2.7.1 Toggle Switch 26
2.7.2 Push Button Switch 26

2.8 Mechanical Components 27

2.8.1 Bearing 27
2.8.1.1 Single Row, Deep Groove Ball Bearing 27
2.8.1.2 Angular Contact Ball Bearing 28
2.8.1.3 Spherical Roller Bearing 29

2.8.2 Belt Drives and Chain Drives 29
2.8.2.1 Types of Belt Drives 30
2.8.2.2 Chain Drives 31

2.8.3 Rectangular Mild Steel 32

2.7 Selection of Material 33

2.7.1 Motor 33
2.7.2 Relay 34
2.7.3 Feeders and Orientations System 34
2.7.4 Switch 34
2.7.5 Rectangular Mild Steel 34
3. METHODOLOGY

3.1 Introduction 35
3.2 Planning of Project 35
3.3 Planning Process 37
 3.3.1 Gantt Chart 37
3.4 Literature Review 40
 3.4.1 Book 40
 3.4.2 Journal and Articles 40
 3.4.3 WebPages 40
3.5 Designing Process 40
3.6 Procurement 41
 3.6.1 Specification of Material 42
3.7 Building and Testing Process 45
3.8 Analysis and Modification 45

4. DESIGN & DEVELOPMENT 46

4.1 Mechanical Design 46
 4.1.1 Design Concept One 47
 4.1.2 Design Concept Two 48
 4.1.3 Selection of Design 48
4.2 Electrical Designs 50
 4.2.1 Motor Control 50
 4.2.2 Machine Control Design 51
4.4 Fabrication Process 53
 4.4.1 Mechanical Fabrication 53
 4.4.1.1 Frame 53
 4.4.1.2 Conveyor 53
 4.4.1.3 Cutting Mechanism 54
5. RESULT & DISCUSSION

5.1 Result
 5.1.1 The Lemon Grass Cutter Machine
 5.1.2 Sequence Operation of The Semi Automated Lemon Grass Cutter
 5.1.3 Lemon Grass Cutting

5.2 Project Analysis
 5.2.1 Mechanical Orientation
 5.2.1.1 Orientation by Pressure Break and Wall
 5.2.1.2 Conveyor Two
 5.2.1 Electrical Control
 5.2.2 Cutting Rate Analysis

6. CONCLUSION

6.1 Conclusion

6.2 Recommendation

REFERENCES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Worker harvesting lemon grass</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Trimmed lemon grass ready for sell</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Electric motors</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Principle of DC motor</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Principle of AC motor</td>
<td>10</td>
</tr>
<tr>
<td>2.5a</td>
<td>Motor layout</td>
<td>10</td>
</tr>
<tr>
<td>2.5b</td>
<td>Driving waveforms</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Phase control controls output for nearly 180°</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>An electromechanical relay</td>
<td>13</td>
</tr>
<tr>
<td>2.8</td>
<td>General-purpose Relay</td>
<td>14</td>
</tr>
<tr>
<td>2.9</td>
<td>Common relay symbols</td>
<td>15</td>
</tr>
<tr>
<td>2.10</td>
<td>G3S/G3SD Solid-state Relay</td>
<td>15</td>
</tr>
<tr>
<td>2.11</td>
<td>Centerboard hopper</td>
<td>19</td>
</tr>
<tr>
<td>2.12</td>
<td>Rotary disk feeder</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>Centrifugal hopper feeder</td>
<td>20</td>
</tr>
<tr>
<td>2.14</td>
<td>Bladed wheel hopper</td>
<td>21</td>
</tr>
<tr>
<td>2.15</td>
<td>Tumbling barrel hopper</td>
<td>21</td>
</tr>
<tr>
<td>2.16</td>
<td>Rotary centerboard hopper</td>
<td>22</td>
</tr>
<tr>
<td>2.17</td>
<td>Revolving hook part</td>
<td>23</td>
</tr>
<tr>
<td>2.18</td>
<td>Magnetic disk feeder</td>
<td>23</td>
</tr>
<tr>
<td>2.19</td>
<td>Rivet rejection and orientation</td>
<td>24</td>
</tr>
<tr>
<td>2.20</td>
<td>Washer rejection and orientation</td>
<td>25</td>
</tr>
<tr>
<td>2.21</td>
<td>Bottle cap rejection and orientation</td>
<td>25</td>
</tr>
<tr>
<td>2.22</td>
<td>General use toggle switch</td>
<td>26</td>
</tr>
<tr>
<td>2.23</td>
<td>General use push button</td>
<td>27</td>
</tr>
<tr>
<td>2.24</td>
<td>Single row-ball bearing</td>
<td>28</td>
</tr>
<tr>
<td>2.25</td>
<td>Angular contact ball bearing</td>
<td>28</td>
</tr>
</tbody>
</table>
5.3 Lemon grass before cutting process
5.4 Cutting process
5.5 Lemon grass after cutting process
5.6 Mechanical orientation
5.7 Lemon grass hopper
5.8 Conveyor one
5.9 Pressure break
5.10 Conveyor two
5.11 Cutter mechanism
5.12 Lemon grass projecting by wall
5.13 The wall assembled at conveyor one
5.14(a) Side view of conveyor two
5.14(b) Side view of conveyor two
5.15 Lever
5.16 Control panel box
5.17 Current electrical diagram
5.18 Cutting rate of lemon grass by manual and machine
LIST OF TABLES

2.1 Type of part and feeder .. 18
2.2 Type of part and orienter 24
2.3 Advantages and disadvantages of AC and DC motors 33

3.1 Gantt chart for PSM 1 ... 38
3.2 Gantt chart for PSM 2 ... 39
3.3 Bill of Material for SALGC machine 41
3.4 Specification of material 42

4.1 The criteria selections of design 49

5.1 Cutting rate of testing ... 67
5.2 Comparison of manual and machining cutting method 68
LIST OF ABBREVIATIONS, SYMBOLS, NOMENCLATURES

- SMI - Small Medium Industry
- SALGC - Semi-Automated Lemon Grass Cutter
- AC - Alternate Current
- DC - Direct Current
- Hz - Hertz
- CD - Compact Disc
- EMRs - Electromechanical Relays
- RF - Radio Frequency
- LED - Light Emiting Diode
- FET - Field Effect Transistor
- PWM - Pulse Width Modulation
- NC - Normally Close
- NO - Normally Open
- SPST - Single-Pole Single Throw
- SPDT - Single-Pole Double-Throw
- DPDT - Double-Pole, Double Throw
- mm - Millimeter
- V - Volts
- Amp - Ampere
- N.m - Newton . Meter
- O/P - Output
- I/P - Input
CHAPTER I
INTRODUCTION

Nowadays, the improvement in technology can be seen clearly in different sectors such as manufacturing to agriculture. In agriculture, there are many machines being made for the agriculture purposes. The cutter machine is common agriculture machine and being used to cut or sliced vegetables or fruits. Lemon grass is one of the plants that can be considered for cut. According to Wikipedia (2008), lemon grass or Cymbopogon which is a genus of about 55 species of grasses, native to warm temperate and tropical regions of the Old World and Oceania. It is a tall perennial grass. Common names include lemon grass, lemongrass, barbed wire grass, silky heads, citronella grass, fever grass or Hierba Luisa amongst many others. Lemongrass can also be grown at home by leaving the stalks bought from the market in a small pot of water for two weeks. As soon as little white roots grow, it can be moved to soil. The plants are perennial in nature and can give good crop up to 5 years. The first harvesting is done in about 90 days after planting and subsequently at 50-60 days interval. As shown in Figure 1.1, usually the lemon grass will be harvested manually by worker by cutting the grass 10 cm above ground level, this will left the leaves uncut. The lemon grass then will be clean by cutting the leaves using machete before proceed to another process. One of after harvest process is cutting process where the lemon grass will be cut to small size dimension or being shredded. The processing process that being using nowadays especially in Small Medium Industry (SMI) only used the automated or semi-automated machines to turn the lemon grass to the small size, but this neglecting the trimming process that still being done by man power. To make this process get into the automated process line, one effective machine is needed so the productivity of the line can be increased.
1.1 Problem Statement

Small and medium enterprises or SMI nowadays using the chopper or cutter machine, specifically to turn the semi process lemon grass to small sized. But, the trimming process for the leaves is usually done manually. Figure 1.2 shows a trimming lemon grass. An operator is needed to trim the leaves by using knife and this will increase the risk to injury. It also gives an effect to the productivity. To overcome this problem, one effective semi-automated machine will be fabricated so when the lemon grass being fed manually, the cutter mechanism will trim the lemon grass, at the upper part (leaves) automatically. This project may overcome some of the problems encountered by human labors in terms of safety, fatigue and ergonomics, which will boost the results for better and faster work. This also can indirectly reduce the cost of production and eliminate repetitive task by human labor, which often leads to an unpleasant working environment.

Figure 1.2: Trimmed lemon grass ready for sell (William, 2008)
1.1 Problem Statement

Small and medium enterprises or SMI nowadays using the chopper or cutter machine, specifically to turn the semi process lemon grass to small sized. But, the trimming process for the leaves is usually done manually. Figure 1.2 shows a trimming lemon grass. An operator is needed to trim the leaves by using knife and this will increase the risk to injury. It also gives an effect to the productivity. To overcome this problem, one effective semi-automated machine will be fabricated so when the lemon grass being fed manually, the cutter mechanism will trim the lemon grass, at the upper part (leaves) automatically. This project may overcome some of the problems encountered by human labors in terms of safety, fatigue and ergonomics, which will boost the results for better and faster work. This also can indirectly reduce the cost of production and eliminate repetitive task by human labor, which often leads to an unpleasant working environment.

Figure 1.2: Trimmed lemon grass ready for sell (William, 2008)
1.2 Objective and Scope

1.2.1 Objective

The objective of the project based on application of knowledge in the field of robotic and automation to be apply to the machine. The following objectives are specified:

i. To design the appropriate Semi-Automated Lemon Grass Cutter (SALGC)

ii. To fabricate the selected prototype of the design

iii. To cut lemon grass to specific size that which is in range of 15cm to 20cm

1.2.2 Scope

The scopes of project are important as a fold review of project that being conducted. Without it, panels or some other researcher would have some problem to understand and assess the thesis.

In the first scope, it have been set that the machine should have the appropriate design with one drive motor for conveyer to drive the lemon grass to the cutter. The research is centered on the use of the motor because there are many drive motor available in the market and the selection of motor must be appropriate with the load.

Second scope that have been set that the lemon grass shall be manually feed to the machine hence the term semi-automated. The appropriate feeder or orientation design is needed so the the lemon grass in mass quantity can be arranged in the same orientation through out the conveyer to the cutting mechanism. This design must be appropriate with the SMI because the product may come in bulk and the manual orientations is tedious.

Third scope that have been set where the cutting mechanism shall be controlled by motor using electrical control system and the lemon grass will be cut to specific size.
This need research on the available cutting mechanism that already applied in certain agriculture cutting machine. Also the use of relay must be taken considerably in term of design, wiring and the appropriate relay used.
CHAPTER 2
LITERATURE REVIEW

2.1 Background

This chapter is important in determining the way of the project will lead because the mechanism of this project deal with fundamental of industrial automation and mechanical structure. Literature reviews have been conducted for all elements involved in the development of this project.

The elements that will be presented in this chapter involve the understanding of the title, objective, problem statement and the scope of project. All this information will be taking as guide to get the information from all sources either from book, journal, patent, conference paper, research paper or website.

2.2 Actuator

In industrial control system, an actuator is a hardware device that convert a controller command signal into a change in a physical parameter. Simply put, an actuator is something that converts energy into motion. It can also be used to apply a force. According to Groover (2008), the change of the physical parameter is usually mechanical, such as a position or velocity change. An actuator typically is a mechanical device that takes energy, usually created by air, electricity, or liquid, and converts that into some kind of motion. That motion can be anything from blocking to clamping to ejecting. Actuators are typically used in manufacturing or industrial applications and may be used in things like motors, pumps, switches, and valves. An
actuator is also a transducer, because it can changes one type of physical quantity, such as electric current, into another type of physical quantity, such as rotational speed of an electric motor. The controller command signal is usually low level, so an actuator may also require an amplifier to strengthen the signal sufficiently to drive the actuator.

Tatum (2008) classified actuator into three categories, according to the type of amplifier whether electrical, hydraulic or pneumatic. Electrical actuators are most common, they include electrical motors of various kinds, stepper motors, and solenoids. Electrical actuators can be either linear (output is linear displacement) or rotational (output is angular displacement). Hydraulic actuators use hydraulic fluid to amplify the controller command signal. The available devices provide either linear or rotational motion. Hydraulic actuators are often specified when large forces are required. Pneumatic actuators use compressed air (typically “shop air” in the factory) as the driving power. Again, both linear and rotational pneumatic actuators are available. Because of the relatively low air pressure involved, these actuators are usually limited to relatively low force application compared with hydraulic actuators.

Perhaps the most common type of actuator is powered by air or the pneumatic cylinder, also known as the air cylinder. Air cylinders are air-tight cylinders, typically made from metal, that use the energy of compressed air to move a piston. Air cylinders are most commonly used in manufacturing and assembly processes. Grippers, which are used in robotics, used actuators driven by compressed air to work much like human fingers.

Actuators can also be powered by electricity or hydraulics. Much like there are air cylinders, there are also electric cylinders and hydraulic cylinders where the cylinder converts electricity or hydraulics into motion. Hydraulic cylinders are often used in certain types of vehicles.

Many actuators have more than one type of power source. Solenoid valves, for example, can be powered by air and electricity. Electricity powered the solenoid, and the solenoid, powered by air, actuates the valve. Alternatively, the solenoid can be powered by hydraulics and electricity.