REDESIGN OF NAIL CLIPPER THROUGH BD DESIGN FOR ASSEMBLY METHODOLOGY

Thesis submitted in accordance with the requirements of the Universiti Teknikal Malaysia Melaka for the Degree of Bachelor of Engineering Manufacturing (Engineering Material) with Honours.

By

Mohd. Badli Bin Ramli
Faculty of Manufacturing Engineering
MEI 2009
JUDUL:
Redesign of Nail Clipper through BD Design For Assembly

Methodology

SESII PENGAJIAN:
Semester 2 2008/2009

Saya Mohd. Badli Bin Ramli mengaku membenarkan laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
4. *Sila tandakan (✓)

☐ SULIT
☐ TERHAD
☐ TIDAK TERHAD

(TANDATANGAN PENULIS)
Alamat Tetap:
No.18, Jalan makmur 51, Taman Damai Jaya 81300 Skudai, Johor Darul Takzim.

(TANDATANGAN PENYELIA)
Cop Rasmii:
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka.

Tarih: 22 MEI 2009

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby declare that this report entitled “
is the result of my own research except as cited in the references.

Signature :
Author’s Name : Mohd Badli Bin Ramli
Date : 22 Mei 2009
PROPOSAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Material Engineering). The members of the supervisory committee are as follow:

Ismail Bin Abu Shah
(PSM Supervisor)
22 Mei 2009
ABSTRACT

It is now widely accepted that the majority of the cost involved in assembly is determined at the earliest design stage. Although it is obviously important to keep assembly cost as low as possible, in this project, nail clipper is being chosen as a subject. The main objective is to reduce parts count, where it is a major influencing factor when considering the assembly efficiency. DFA method through Boothroyd Dewhurst (BD) Methodology is chosen because of well established technique for cost reduction at the design for manufacture interface. The DFA method starts with the analysis to rate each component on its ease of orientation and assembly of an existing nail clipper design. In the original design, six components need to be analyzed to optimize manufacturing cost. Through the methodology, the re-design helps to simplify the design and reduce the part count into three components. From the simplification approach, the cost estimation can be done. It predicts the cost of the product before a great deal of capital resources have been consumed in its design where in this case 50% of parts reduction will help tremendously. This explain the conceptual design using BD DFA helps to identify potential saving that manufacturing people need to be implemented especially in this economic downturn.
ABSTRAK

DEDICATION

To my beloved parents, especially to my mother Ba`ayah Bt Abdullah, to my supervisor Mr Ismail Abu Shah and all of my friends.
ACKNOWLEDGEMENTS

In the name of Allah, The Beneficent, The Merciful.

Alhamdulillah, all praises to Him that I have been able to complete the first-semester final year project titled “Redesign Nail Clipper Through Design for Assembly Methodology”. Highest appreciation and sincere gratitude regarded to the project supervisor, Mr. Ismail bin Abu Shah, for the guidance and attention in helping me to complete this final year project. Not forgotten to En Fadhil Muin Bin Hashim from Fujitsu Component (M) Sdn. Bhd. for giving a very good support in making the prototype. All comments given had urged me to struggle hard in fulfilling the required deliverables of the project. Utmost thanks family that support me a lots, especially to my mother Ba`ayah Bt. In addition, thanks to all my peers friends, for the continuous support and willingness to share their ideas regarding this project.

Thank you to all of you.
TABLE OF CONTENT

Declaration i
Approval ii
Abstract iii
Abstrak iv
Dedication v
Acknowledgement vi
Table of Content vii
List of Tables xi
List of Figures xii
List Abbreviations xiv

1. INTRODUCTION 1
1.1 Background of the Project 1
1.2 Objectives 3
1.3 Scopes 3
1.4 Problem Statement 4
1.5 Significant of study 5

2. LITERATURE REVIEW 6
2.0 Introduction 6
2.1 Comparison on DFA method 6
2.2 Nail Clipper 9
2.3 Nail Anatomy 10
2.4 The Microstructure and Mechanical properties of Human fingernail 11
2.5 Design 13
2.5.1 What is Design 13
2.6 Redesign 15
5. Conclusion

5.1 Conclusion
5.1.1 Main Summary
5.1.2 Part Count Summary
5.2 Nail clipper Evolution
5.2.1 Old Nail Clipper
5.2.2 New Design of Nail Clipper
5.3 Conclusions for Future Work

REFERENCES

APPENDICES

A&B Gantt chart
C Manual Handling& Manual Insertion Table
D Journal of Redesign of Nail Clipper through BD Design for Assembly Methodology
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The rating of DFA Methodologies characteristic.</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison table for DFA methodology</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison DFA approaches summary</td>
<td>8</td>
</tr>
<tr>
<td>3.4</td>
<td>Example of Alpha and Beta for Current Nail Clipper</td>
<td>67</td>
</tr>
<tr>
<td>3.5</td>
<td>Example of Time and Cost Analysis on Product</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Work Instruction Manual for old nail clipper.</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of Geometrical Features of Original Design on Handling Time</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>Handling Time per Item</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Example Insertion Handling table</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>DFA Worksheet Analysis for Original Design of Nail Clipper Assembly</td>
<td>88</td>
</tr>
<tr>
<td>4.6</td>
<td>Possible Design Changes for Nail Clipper</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>Specification of New Nail Clipper Component</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>Handling Time per Item</td>
<td>97</td>
</tr>
<tr>
<td>4.8</td>
<td>Insertion Time per Item</td>
<td>98</td>
</tr>
<tr>
<td>4.9</td>
<td>DFA Worksheet for Analysis for New Design of Nail Clipper Assembly</td>
<td>99</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of DFA Analysis Results</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

2.1 Lever-type nail clipper with a file 9
2.2 Nail Anatomy 12
2.3 Example of product design and assembly 13
2.4 Example for redesigning an assembly 15
2.5 Product structure for product 1 18
2.6 Assembly Model 19
2.7 Product structure in relation to the assembly object complexity 20
2.8 Product structure in relation to the position of parts 21
2.9 Technical and economic comparison of various composing methods 22
2.10 Summary of criteria for assembly-oriented product structuring 23
2.11 Design criteria at the level of components 24
2.12 Example of redesigned product, a two-speed reciprocating power saw for easier assembly 30
2.13 A worksheet fragment used in the Boothroyd and Dewhurst DFA analysis of a product 35
2.14 Pneumatic piston sub-assembly 37
2.15 Worksheet for pneumatic piston subassembly 38
2.16 Redesign of pneumatic piston sub-assembly 38
2.17 Worksheet for redesign of pneumatic piston subassembly 39
2.18 Original and redesign of pneumatic piston sub-assembly 39
2.19 Alpha and beta rotational symmetries for various parts 40
2.20 Bar Chart of Costs per Group of Parts 43
2.21 Exploded View of the Old Design 43
2.22 Exploded View of the New Design 44
2.23 Summary of Relevant DFA-results (cumulative data) 44
2.24 The heavy-duty stapler 45
2.25 Boothroyd and Dewhurst assembly worksheet for a heavy-duty stapler 47
2.26 Form given to the modules proposed by conceptual DFA method 48
2.27 Modulus to part count comparison of the existing and proposed design of the stapler 49
2.28 A comparison of Staplers A, B, and C with respect to part count. 50
2.29 The electric wok 51
2.30 Electric work worksheet for the Boothroyd and Dewhurst DFA method 52
2.31 Module to part count comparison of the existing and proposed design of the electric wok 53
2.32 A comparison of Woks A and B with respect to part count 54
2.33 3D solid modeling 56
3.1 Existing Nail Clipper Dimensions (Side View) 65
3.2 Existing Nail Clipper Dimensions (Front View) 65
3.3 3D drawing on Current Nail Clipper 66
3.4 Example of product Structure on Existing Product 66
4.1 Product Structure on Existing Product 73
4.2 Picture of Nail Clipper in Product Structure Form 73
4.3 Nail Clipper Component Manufacturing Process & Joining Method. 74
4.4 Side view of Old Nail Clipper 74
4.5 Front view of Old Nail Clipper 75
4.6 Isometric view of Old Nail Clipper 75
4.7 Production Layout for Old Nail Clipper. 78
4.8 Work Envelop for Each Nail Clipper Component. 81
4.9 Example of Manual handling. 84
4.10 Example of insertion handling table. 87
4.11 Box Type of Combined Body. 90
4.12 Pusher. 91
4.13 Assembly Drawing of Redesign. 92
4.14 Product Structure on Re-design Nail Clipper 93
4.15 Work Envelop for new design nail clipper. 93
4.16 Production Layout for New Nail Clipper. 95
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD</td>
<td>Boothroyd Dewhurst</td>
</tr>
<tr>
<td>DFMA</td>
<td>Design for manufacture and Assembly</td>
</tr>
<tr>
<td>DFA</td>
<td>Design for Assembly</td>
</tr>
<tr>
<td>DFM</td>
<td>Design for Manufacture</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>RP</td>
<td>Rapid Prototyping</td>
</tr>
<tr>
<td>3D</td>
<td>3 Dimension</td>
</tr>
<tr>
<td>2D</td>
<td>2 Dimension</td>
</tr>
<tr>
<td>UTeM</td>
<td>Universiti Teknikal Malaysia Melaka</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.0 Introduction

In this 1st chapter, the contents included the background, objective, scope and the problem statement of the research. In the problem statement, states the reason of the research done. For the objective of the research, it will state the aim of the research that will be done and limitation of the research will be stated in the scope of the research. Current financial crisis has created especially for the industrial people to be more and more conscious in spending. One of the strategies to lower the manufacturing cost is through the product design. In general, a product design can dictates the manufacturing complexity as early as in the design stage. A product is developed from a construction of several parts and has gone through many processes to create a physical object that can performs a function or multi-function. These processes incurred cost particularly in this work, is emphasized on how to reduce cost through the assembly operation when the operational time of the assembly process can be quantified into cost as well. The design of a product itself relies on the part quantity to be assembled or known as part count. Part count is a major influencing factor when considering assembly efficiency. As the part count in a product increases, the more assembly time and assembly cost will be. As such, the assembly operation (including such aspects as the assembly time and assembly cost) can be evaluated early in the design process, with the potential for improving the design. Design for assembly (DFA) is of considerable importance since the assembly operation is often responsible for more than 50 per cent of total manufacturing cost, and 40 per cent to 60 per cent of total production time.
Boothroyd Dewhurst (BD) DFA is one of the tools that can be used to improve the design without compromising the quality aspect and helps to lessen the assembly cost. Through BD DFA, it analyzes and evaluates product designs for ease of assembly. This tool guides the design team to drive the manufacturing cost by focusing on part count to achieve cost reduction through product simplification. It addresses assembly quality largely through product structure simplification and reduction in the total numbers of parts in a product. In the design simplification, the process of eliminating and combining parts are carried out properly in order to ease the assembly. Thus to improve a design by using the BD DFA method, nail clipper has been chosen as a product in this work to ease the assembly through the design simplification process.

1.1 Background of The Research

Assembly is more than putting parts together. Assembly is the capstone process in manufacturing, it brings together all the upstream process of design, engineering, manufacturing and logistics to create an object that performs a function. Many organizations have different method for establishing the critical issues in product design; as a result they will focus their efforts in designing. The use of such methods is often restricted to safety, quality, reliability and maintainability issue. There are many ways or technique that can be used for improving the original product. Design for Manufacturing and Assemble (DFMA) is the one of them, this methodology should be understand and explored before applying it into the original product. DFMA is divided into 2, which is Design for Manufacturing (DFM) and Design for Assembly (DFA). The term Design for Assembly (DFA) describe as an analysis method that was developed whereby designers could take assembly problems into account in the product design phase. Then, the design considerations were expanded to include Design for Manufacture (DFM) of the individual component parts of a product. In both cases, the terms were applied to the design of the product and not to the manufacturing process. The objectives were clear and the results outstanding. Applications of DFA resulted in simpler products with fewer parts, saving millions of dollars in manufacturing costs in many companies. There is few
popular assembly methods, such as Boothroyd-Dewhurst, Lucas and Hitachi assembly reliability Evaluation Method are the most well known assembly methods. In this thesis, Boothroyd-Dewhurst analysis is chosen as primary tools to undergo all the experiments that will be done.

1.2 Objective

To make sure that this research meets the goals and requirement, the objective of this work is to redesign the original nail clipper by creating new design feature with less part count and help to reduce the operational assembly cost using BD DFA method. In this case study, the work is only focused on the manual operation of assembly process. This is due to manual operation is the basic and most applied assembly process in the industries. Whereas BD DFA is used in the analysis to ease the assembly time and could estimate the reduction of the assembly cost as well.

1.3 Scope

The scope of this research is limited by only use the manual Boothroyd Dewhurst technique for design analysis and use the Autodesk Inventor profesional 2008 for 3D modeling & Redesign.
1.4 Problem Statements

Since beginning of the 19th century, the increasing need for finished goods in large quantities, especially in the armaments industries, has lead engineers to search for and develop new methods of manufacturing or production. As a result of developments in the various manufacturing process is now possible to mass produce high quality durable goods at low cost. In addition, nowadays the increasing of oil price had give a deep impact to the world. In the manufacturing process the increasing of oil price had affected the manufacturing production line, especially when producing various parts to make one complete product. If all manufacturing parts price increases, the more of parts being use to be assembled for one product simultaneously it will increase the price of that product. Although during the last few decades, effort have been made to reduce assembly costs by the application of high speed automation and more recently, by the use of assembly robots, success has been quite limited. Workers assembling mechanical product are still using the same basic tools as those employed at the time of the Industrial Revolution. To overcome the problem, design and manufacturing process simplification should be implement totally to reduce the burden on consumer. In this globalization era lean manufacturing is the main aims of each company, with that manufacturer will earn more profits and continuous mass production. With that reason, Redesign of Nail Clipper through Design for Assembly Approach has been suggested for the Final Year Project title. Where this research will reduce nail clipper parts counts, simpler the assembly process and redesign back the original nail clipper and improve the ergonomic factor of the new design nail clipper. This research also will define the component that can be reduce, improving the original product in aspect of cost and product assembly. With this final year project will shorten the cycle time, reduce the product variant, increase company profits and reduce cost without disturbing the quality issue.
1.5 **Significance of the Study**

In this new era of manufacturing globalization world, there are many ways to increase manufacturing productivity, by utilizing improved material, tools, processes, plan layout, and etc. Consideration of manufacturing and assembly during product design hold the greatest potential for significant reduction in production cost and increased productivity. In other words, if the product is poorly designed for assembly and manufacturing, too much time and money have already been expended in justifying the design to consider major changes or even a completely new design. Design for assembly (DFA) should be considered at all stage of the design process. Conceptualizes alternative solution and begins to realize their though on paper, it should give serious consideration to the ease of assembly of the product or subassembly during production and service. The Redesign of Nail Clipper gives better solution of current problem that exist all around the globe. The study is about the simplifying the original nail clipper design is the main component of this research accomplishment. Besides that, the manufacturing processes are needed to be sharpened in terms of its skill and understanding the design for assembly (DFA) as the main topic to be accomplished. In designing a good concept of prototype it is necessary to achieve the best perception of the evaluator at the end of the research. By applying DFA tool, communication between manufacturing and design engineering is improved, and ideas, reason and decision making during design process become well documented for future reference.
CHAPTER 2
LITERATURE REVIEW

2.0 Introduction

In this chapter, it will mainly discuss about the general operation, principles and mechanisms that related to the Re-engineering of Nail Clipper through DFA methodology. Some of previous research and studies were included into this chapter to support the development of ideas for Re-engineering of Nail Clipper concept and design.

2.1 Comparison of DFA method

From the explanation about Hitachi AEM, Lucas and Boothroyd - Dewhurst, a potential user will intend to know which method best suit for a particular purpose. Table shows the rating of DFA methodology characteristic and table shows a comparison table for a variety of method and the following is the key to interpretation of the table. Shahriman,S.(2007)
Table 2.1: The rating of DFA Methodologies characteristic.

<table>
<thead>
<tr>
<th>Rating method</th>
<th>Better (B)</th>
<th>Average (A)</th>
<th>Worse (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEM</td>
<td>-teaches good practice</td>
<td>-systematic</td>
<td>-Rapidly Effective</td>
</tr>
<tr>
<td></td>
<td>-systematic</td>
<td>-training and practice</td>
<td>-Designer Effort</td>
</tr>
<tr>
<td></td>
<td>-Implementation cost effort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucas</td>
<td>-systematic</td>
<td>- teaches good practice</td>
<td>-Designer Effort</td>
</tr>
<tr>
<td></td>
<td>-rapid effective</td>
<td>-training & practice</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Implementation cost effort</td>
<td></td>
</tr>
<tr>
<td>Boothroyd</td>
<td>-teaches good practice</td>
<td>-training and practice</td>
<td>-Designer Effort</td>
</tr>
<tr>
<td>Dewhurst</td>
<td>-systematic</td>
<td>-systematic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-rapid effective</td>
<td>-Implementation cost effort</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2: Comparison table for DFA methodology (Redford and Chal, 1994)

<table>
<thead>
<tr>
<th>Method Criteria</th>
<th>AEM</th>
<th>Lucas</th>
<th>Boothroyd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training and practice</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Implementation cost effort</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Teaches good practice</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Systematic</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Rapidly effective</td>
<td>W</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Rapidly effective</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
</tbody>
</table>
Description:

A=Average, B = Better , W= Worse.

- Training and practice- little or no training
- Implementation cost effort- merely a seminar of brief training required
- Teaches good practice- teaches good DFA practice reliant on method
- Systematic-involved step by step systematic procedure to ensure all relevant issues are considered
- Rapidly effective- like to be rapidly effective for brief training required
- Rapidly effective-little or no additional designer time or effort require for effective use

Table 2.3: Comparison DFA approaches summary. Gary Wallace and Peter Sackett (1996)