Design of Safety System for Industrial Robots Work Cells

Thesis submitted in accordance with the partial requirement of the
Universiti Teknikal Malaysia Melaka for the
Bachelor of Manufacturing Engineering (Robotic & Automation) with honours

By

NOORHAYATI BT SHAHARUDIN

Faculty of Manufacturing Engineering
April 2008
JUDUL: DESIGN OF SAFETY SYSTEM FOR INDUSTRIAL ROBOTS WORK CELLS

SESI PENGAJIAN: 2007-2008

Saya NOORHAYATI SHAHARUDIN

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (√)

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap: Cop Rasmi:
352, KG. JIBOI BARU, AMPANGAN, 70400, SEREMBAN, N. SEMBILAN

Tarikh: _______________________

Tarikh: _______________________

* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this thesis entitled “Design of Safety System for Industrial Robots Work Cells” is the results of my own research except as cited in references.

Signature : ..
Author’s Name : Noorhayati Shaharudin
Date :
APPROVAL

This PSM submitted to the senate of UTeM and has been as partial fulfillment of
the requirements for the degree of Bachelor of Manufacturing Engineering
(Robotic & Automation) with honours. The members of the supervisory
committee are as follow:

………………………………
(Muhamad Arfauz A Rahman)
(Official Stamp & Date)
The use of industrial robots in manufacturing system has increasing. Robots keep workers safe by taking over hazardous or repetitive jobs that lead to injuries and workers compensation claims, but like all moving machinery, robots also introduce hazards into the work area, especially with work cells that are tended by human operators.

This report presents the research on the safety system for industrial robots work cells. The literature review chapter described all the related topics related to the project. These include the physical safety guards, safety sensory guards and signals and safety awareness guards and signals. Besides that, there also stated the newly standard for safety systems of robot work cells and the standard that related to it. A description of current level safety system of industrial robots work cells in Malaysia also has been described.

There were some methods and tools used in order to complete the project which included the design and development of the system. The methods and tools used are described in the methodology’s chapter.

The discussions, conclusions and suggestions are provided in the last chapter. The discussions described the significant findings of the work done. The conclusions conclude the results get by the work done. Suggestions for further work are also has been described.
ABSTRAK

Terdapat beberapa kaedah dan alat yang digunakan untuk melengkapkan projek ini, yang melibatkan rekaan dan pembaharuan system. Kaedah-kaedah dan alat-alat yang digunakan dihuraikan dalam bab ‘Methodology’.

Perbincangan, kesimpulan dan juga cadangan bagi projek telah disediakan dalam bab terakhir.
DEDICATION

I dedicate this PSM thesis to my beloved parent, Shaharudin Hj. Juri and Saliah Hj. Kuasah, my beloved brothers and sister, Afandi, Azizah and Mohd Nazri.
ACKNOWLEDGEMENTS

First and foremost, the author would like to express her gratitude and appreciation to her supervisor, Mr. Muhamad Arfauz A Rahman who has guided her through the execution of the Projek Sarjana Muda.

The author would like to thank the technician of Robotic and Automation lab, Mr. Nizamul Ikbal for his cooperation and kindness in helping author to conduct the case study.

The author also would like to thank her friends Jannatun Naim Harun and Gwee Chiou Chin for their supports and helps along the completion of PSM.

Last but not least, the author would like to express her gratitude to beloved parent and siblings who had never stopped giving support and always by her side whenever in need.
TABLE OF CONTENTS

Abstract i
Abstrak ii
Dedication iii
Acknowledgements iv
Table of Contents v
List of Figures ix
List of Tables xi
List of Abbreviations, Symbols, Specialized Nomenclature xii

1. INTRODUCTION 1

1.1 Introduction 1
1.2 Problem Statement 2
1.3 Objectives 2
1.4 Scope 3
1.5 Benefit of the Project 3
1.6 Layout of the Thesis 4

2. LITERATURE REVIEW 5

2.1 Introduction 5
2.2 Industrial Robots 6
 2.2.1 Types of Industrial Robots 6
 2.2.1.1 Cartesian robot/ Gantry robot 7
 2.2.1.2 Cylindrical robot 7
 2.2.1.3 Spherical/Polar robot 8
 2.2.1.4 SCARA robot 8
 2.2.1.5 Articulated robot 8
 2.2.2 Robots Working Envelope 8
 2.2.3 Industrial Robots Work Cells 10
 2.2.3.1 Welding Cells 11
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3.2 Assembly Cells</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3.3 Pick and Place Cells</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3.4 Painting Cells</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3.5 Packaging Cells</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3.6 Machine Tending Cells</td>
<td>13</td>
</tr>
<tr>
<td>2.2.4 Semi Automatic Industrial Robots Work Cells</td>
<td>13</td>
</tr>
<tr>
<td>2.2.5 Fully Automatic Industrial Robots Work Cells</td>
<td>13</td>
</tr>
<tr>
<td>2.3 COMAU Robots</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1 SMART NS 16-1.65 Technical Specifications</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2 Working Envelope of SMART NS 16-1.65</td>
<td>17</td>
</tr>
<tr>
<td>2.3.3 Operating Areas and Robot Overall Dimensions</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Hazard Analysis</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1 Robot Hazards</td>
<td>20</td>
</tr>
<tr>
<td>2.4.2 Source of Hazards</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2.1 Human Errors</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2.2 Control Errors</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2.3 Unauthorized Access</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2.4 Mechanical Failures</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2.5 Environmental Sources</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2.6 Power System</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2.7 Improper Installation</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Risk Assessment</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1 Risk identification</td>
<td>24</td>
</tr>
<tr>
<td>2.5.2 Measurement of Risk</td>
<td>24</td>
</tr>
<tr>
<td>2.6 Safety System of Industrial Robots Work Cells</td>
<td>25</td>
</tr>
<tr>
<td>2.6.1 Safeguarding Method of Robot</td>
<td>26</td>
</tr>
<tr>
<td>2.6.2 Safety Zone for Industrial Robot Work Cell</td>
<td>28</td>
</tr>
<tr>
<td>2.6.2.1 Safety Marking Zone</td>
<td>29</td>
</tr>
<tr>
<td>2.7 Safety Standards and Regulations of Industrial Robots Work Cells</td>
<td>30</td>
</tr>
<tr>
<td>2.7.1 Malaysian Standards</td>
<td>30</td>
</tr>
<tr>
<td>2.7.2 ISO Standards</td>
<td>31</td>
</tr>
<tr>
<td>2.7.3 ANSI/RIA Standards</td>
<td>32</td>
</tr>
</tbody>
</table>
2.7.4 Canadian Standards 33
2.7.5 Australian Standards 33
2.7.6 Japanese Standards 35
2.8 Summary of Standards 36
2.9 Current Level of Safety System of Industrial Robots Work Cells 36
2.10 Concluding Remarks 39

3. METHODOLOGY 41
3.1 Introduction 41
3.2 Project Design 41
3.3 System Design 43
3.4 Methodology 45
 3.4.1 Research 45
 3.4.2 Discussion 45
 3.4.3 Case Study 46
 3.4.4 Observation 46
3.5 Tools 46
 3.5.1 Internet 47
 3.5.2 Journals 48
 3.5.3 Books 48
 3.5.4 Software 49
3.6 Project Planning 50
 3.6.1 Project Planning for Projek Sarjana Muda 1 (PSM 1) 50
 3.6.2 Project Planning for Project Sarjana Muda 2 (PSM 2) 53

4. SAFETY STUDY AND ANALYSIS OF CASE STUDY 55
4.1 Introduction 55
4.2 Study Method and Analysis 56
 4.2.1 Assess the Current Practice 57
 4.2.2 Risk Assessment of the Robotic System 57
4.3 Result of the Study 58
 4.3.1 Assess the Current Practice 58
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Robot’s working envelope</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>SMART NS 16-1.65 working Envelope</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Top and side view of operating areas and overall dimension of SMART NS 16-1.65</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Front view of operating areas and overall dimension of SMART NS 16-1.65</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Safety zones for robotic work cells</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Equation for double robots</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart of Project Design</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow Chart of Safety System Design</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>COMAU robots in Robotic & Automation Laboratory, UTeM</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Equation for double robots</td>
<td>64</td>
</tr>
<tr>
<td>5.2</td>
<td>Safety light curtain</td>
<td>66</td>
</tr>
<tr>
<td>5.3</td>
<td>Safety mats</td>
<td>67</td>
</tr>
<tr>
<td>5.4</td>
<td>Two hand control device</td>
<td>68</td>
</tr>
<tr>
<td>5.5</td>
<td>E-Stop</td>
<td>68</td>
</tr>
<tr>
<td>5.6</td>
<td>Aluminum profile</td>
<td>69</td>
</tr>
<tr>
<td>5.7</td>
<td>Floor mounting</td>
<td>70</td>
</tr>
<tr>
<td>5.8</td>
<td>L-Fitting</td>
<td>70</td>
</tr>
<tr>
<td>5.9</td>
<td>T-Fitting</td>
<td>71</td>
</tr>
<tr>
<td>5.10</td>
<td>Angle Fitting</td>
<td>71</td>
</tr>
<tr>
<td>5.11</td>
<td>Hinge Kit</td>
<td>72</td>
</tr>
<tr>
<td>5.12</td>
<td>Door stops</td>
<td>72</td>
</tr>
<tr>
<td>5.13</td>
<td>Top view of the safety fencing</td>
<td>73</td>
</tr>
<tr>
<td>5.14</td>
<td>Front view of safety fencing</td>
<td>74</td>
</tr>
<tr>
<td>5.15</td>
<td>Right view of the safety fencing</td>
<td>75</td>
</tr>
<tr>
<td>5.16</td>
<td>Welded mesh</td>
<td>76</td>
</tr>
<tr>
<td>5.17</td>
<td>The complete design of the safety fencing</td>
<td>77</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.18</td>
<td>Overall design of safety fencing</td>
<td>78</td>
</tr>
<tr>
<td>5.19</td>
<td>Top view of the safety fencing</td>
<td>79</td>
</tr>
<tr>
<td>5.20</td>
<td>Safety interlock switch</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF TABLES

2.1 SMART NS Version Available 15
2.2 SMART NS 16-1.65 Technical Specification 16
2.3 Robot Operation Hazards 21
2.4 Robot Safeguards 26
2.5 Comparison with ISO Standards 36
3.1 Gantt chart for PSM 1 52
3.2 Gantt chart for PSM 2 54
4.1 Access of Current Practice 58
4.2 Level of Safety System 61
LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

AS - American standard
FKP - Fakulti Kejuruteraan Pembuatan
ISO - Industrial Organization of Standardization
JIS - Japanese Industries Standards
NC - Normally Closed
NO - Normally Open
PSM - Projek Sarjana Muda
RIA - Robotic Industries Association
UTeM - Universiti Teknikal Malaysia Melaka
CHAPTER 1
INTRODUCTION

1.1 Introduction

An industrial robot can be defined as a position controlled, reprogrammable, multifunctional manipulator having a number of degrees of freedom in three-dimensional space and capable of handling materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks (Dhillon, 1991).

Due to the characteristic of the industrial robot, it can present two opposing viewpoints in terms of industrial safety. The application of industrial robots permits the removal of the need for humans to perform certain dangerous and harmful operations, hence increasing safety. Applications in areas like welding, forging, sandblasting, painting, etc., enable workers to be free from adverse and unsafe working conditions.

However, on the other hand, the industrial robots themselves can also create dangerous conditions and threaten human safety. Accidents and even fatalities as reported from overseas have proven that industrial robots can be hazardous if no safeguard is provided to eliminate the potential hazards. Therefore, it is essential that robot users and manufacturers recognize the potential hazards and implement safeguards to eliminate the hazards.
1.2 Problem Statement

The use of robots in industry is growing at a significant rate. Robots have been used by decades in a wide variety of manufacturing industries, ranging from car assembly plants and carton building to circuit board manufacture (RIA, 1986).

Robots have many different applications such as material handling, welding, painting, machine tool load and unload, assembly, and so forth (OSHA, 1999). They are generally used to perform tasks, in hazardous environments, highly repetitive, and requiring heavy lifting. Therefore, the introduction of robots into the workplace reduces exposures to some common industrial hazardous situations with the potential to cause operators injuries. Nevertheless, it has also introduced new risks.

Robots are complex and sophisticated machines with the ability to move at various speeds along many axes. Such characteristics increase their flexibility and functions, but they also increase the hazards and the potential of accidents.

This project is done to determine the latest and new variety of safety system for industrial robots work cells. The latest technology on safety system will be researched such as the latest sensor and the problem faced by existing work cells. Automation and Robotic Laboratory of UTeM will be a case study. This project can be a reference to other universities or industries to improve their existing work cells or installed a new safety system for their industrial robots.

1.3 Objectives

The objectives of the project are:

1. To obtain the latest technology of safety systems installation for industrial robots work cell.
2. To design and develop a safety system for industrial robot work cell.
3. To identify hazards associated with applications of industrial robots.

1.4 **Scope**

The scopes of the project are:

1. The design and develop safety system that will be implemented and installed at the Fakulti Kejuruteraan Pembuatan (FKP)’s Automation and Robotic Laboratory of Universiti Teknikal Malaysia Melaka.
2. To come out with the latest technology of safety system installation for industrial robots work cells.

1.5 **Benefit of the Project**

The contributions of the project are mainly practical by nature. It involves the design and development of certain elements of safety system for industrial robots work cells.

The benefits of the project are:

1. The design and development of a safety system will be applied at Automation and Robotic Laboratory of Universiti Teknikal Malaysia Melaka.
2. The design and development of the safety system for industrial robots work cells can be a reference to other universities or industries for the improvement of their work cells or for installation of a new safety system.
3. The project can be a reference to industries or universities for the latest technology of safety system.
4. The hazard study will be a precaution for the industrial robots users.
1.6 Layout of the Thesis

The next chapter provides a literature review in area relating to industrial robots, safety system of industrial robots work cells, the comparison of current safety system of companies’ industrial robots work cells in Malaysia and safety standards and regulations of industrial robot work cells. The literature review provide the understanding and enhance the knowledge of the past, current and potential technologies of safety system that are applicable to the industrial robots work cells, for achieving the objectives of the project. The key points of the literature review are summarized at the end of the chapter.

Chapter 3 describes the methodology how the data related to the project was collected and also how was it generated. It shows how the result was obtained because the methods used in conducting the project affect the result. There are different methods to conduct the project and the methodology state clear reasons why the method is chose. The methods used are appropriate with the objectives of the project the problems occurred and ways to overcome them are discussed.

The safety study method and analysis of the case study are reported in Chapter 4. The study is carried out at the Automation and Robotic Laboratory of Universiti Teknikal Malaysia Melaka. The main aim of the study is to have better understanding of the safety problems that may occurred on the robots and to provide the recommendation and design a better safety system for the robots work cells.

Chapter 5 describes the design and development of the safety system for industrial robots work cells in the Automation and Robotic Laboratory of Universiti Teknikal Malaysia Melaka. The design and development includes floor marking safety zones, fixed fence and selection of safety sensors.

The final chapter concludes the results of the projects and suggestions for future work.
CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Studies in Sweden and Japan indicate that many robot accidents do not occur under normal operating conditions but, instead during programming, program touch-up or refinement, maintenance, repair, testing, setup, or adjustment. During many of these operations the operator, programmer, or corrective maintenance worker may temporarily be within the robot's working envelope where unintended operations could result in injuries (OSHA, 1999).

Typical accidents have included the following:

1. A robot's arm functioned erratically during a programming sequence and struck the operator.

2. A materials handling robot operator entered a robot's work envelope during operations and was pinned between the back end of the robot and a safety pole.

3. A fellow employee accidentally tripped the power switch while a maintenance worker was servicing an assembly robot. The robot's arm struck the maintenance worker's hand.
2.2 Industrial Robots

Robots are programmable multifunctional mechanical devices designed to move material, parts, tools, or specialized devices through variable programmed motions to perform a variety of tasks (Dhillon, 1991). A robot system consists of three elements: human operator, the industrial robot, and a communication system or human-robot interface (Graham, 1991). They are available in a wide range of shapes, sizes, and forms to perform a variety of functions.

The robotic arm can have from one to six axes of movement: Roll (clockwise or counterclockwise at the wrist), yaw (left or right at the wrist), pitch (up or down at the wrist), elbow extension (in or out), shoulder swivel (up or down) and arm sweep (left or right of the entire arm). The number of axes is normally refers as the number of degrees of freedom of the robot. "Degrees of freedom" refer to the directions of motion inherent in the design of robot mechanical systems (DOE, 1998). A robotic arm may be driven by hydraulic, pneumatic or electric power. The way the robot moves is controlled by computerized systems (RIA, 1986).

This mode of operation points at unique characteristics of robots compared to other automated devices, addressing a very common confusion between those terms. The difference between robots and traditional automated machines are 1) its flexibility in spatial movement for a quick and inexpensive change and 2) its programmability to perform a wide variety of complex tasks. The entire movement of robots needs to be programmed and record in advance for each operation they perform (Nagamachi, 1986)

2.2.1 Type of Industrial Robots

Industrial robots are available commercially in a wide range of sizes, shapes, and configurations. They are designed and fabricated with different design configurations and a different number of axes or degrees of freedom. These factors of a robot's design influence its working envelope (the volume of working or reaching space).

Typical industrial robots do jobs that are difficult, dangerous or dull. They lift heavy objects, paint, handle chemicals, and perform assembly work. They perform the
same job hour after hour, day after day with precision. They don't get tired and they don't make errors associated with fatigue and so are ideally suited to performing repetitive tasks. The major categories of industrial robots by mechanical structure are:

1. Cartesian robot /Gantry robot
2. Cylindrical robot
3. Spherical/Polar robot
4. SCARA robot
5. Articulated robot

2.2.1.1 Cartesian robot/ Gantry robot

Used for pick and place work, application of sealant, assembly operations, handling machine tools and arc welding. Cartesian robots (rectangular coordinate robots, rectilinear robots) have three prismatic joints whose axes are coincident with a Cartesian (X, Y, and Z) coordinate system. These robots may also have an attached wrist to allow rotational movement. Gantry robots are a specific type of Cartesian robot.

2.2.1.2 Cylindrical robot

Cylindrical robots have at least one rotary joint and at least one prismatic joint. The space or coordinate system in which these robots operate is cylindrical in shape. Used for assembly operations, handling at machine tools, spot welding, and handling at diecasting machines. It's a robot whose axes form a cylindrical coordinate system.
2.2.1.3 Spherical/Polar robot

Used for handling at machine tools, spot welding, die casting, fettling machines, gas welding and arc welding. Spherical or polar robots have an arm with two rotary joints and one prismatic joint. The axes of a spherical robot form a polar coordinate system.

2.2.1.4 SCARA robot

Selectively compliant arm for robotic assembly (SCARA) robots are cylindrical and have two parallel joints to provide compliance in one selected plane. SCARA robots are commonly used in assembly applications. Used for pick and place work, application of sealant, assembly operations and handling machine tools.

2.2.1.5 Articulated robot

Used for assembly operations, die casting, fettling machines, gas welding, arc welding and spray painting. It's a robot whose arm has at least three rotary joints.

2.2.2 Robots Working Envelope

Robots working envelope or working area is a three-dimensional shape that defines the boundaries that the robot manipulator can reach, or volume of space that encloses the maximum designed reach of the robot manipulator including the end effector, the work piece and the robot itself. All interaction between the robot and other machines, parts and processes must take place in within the working envelope. By using limiting device, the working envelope can be reduced or restricted. The working envelope is influenced by some factors of robot’s design such as the configuration, axes or degrees of freedom. The