UNIVERSITI TEKNIKAL MALAYSIA MELAKA

A QUALITY STUDY OF PARTS PRODUCED BY SILICON RUBBER MOULD USING VACUUM CASTING PROCESS

This report submitted in accordance with the requirements of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) with Honours.

by

SITI ROSSMAH BINTI OMAR

FACULTY OF MANUFACTURING ENGINEERING
2009
JUDUL: “A QUALITY STUDY OF PARTS PRODUCED BY SILICON RUBBER MOULD USING VACUUM CASTING PROCESS”

SESII PENGAJIAN: 2/2008-2009

Saya SITI ROSSMAH BINTI OMAR

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. *Sila tandakan (✓)*

☐ SULIT (Mengandungi maklumat yang berdarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

✓ TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap:
1198 KAMPUNG BELADAU KEPONG,
20050 KUALA TERENGGANU,
TERENGGANU DARUL IMAN.

Tarikh: 22/05/2009

(TANDATANGAN PENYELIA)

Cop Rasmi:

HASSAN BIN ATTAN
Jurutera Pengajian Kanan
Fakulti Kejururan Pembuatan
Universiti Teknikal Malaysia Melaka

Tarikh: 22/05/2009

* Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby declare that this report entitled “A Quality Study of Parts Produced by Silicon Rubber Mould using Vacuum Casting Process” is the result of my own project except as cited in the references.

Signature

Author’s Name : SITI ROSSMAH BINTI OMAR
Date : 22/05/2009
This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design). The members of the supervisory committee are as follow:

(PSM Supervisor)
En. Hassan Bin Attan

HAS SAN BIN ATTAN
Juruterap Pengajak Kanan
Fakulti Kajian Sains Pembustan
Universiti Teknikal Malaysia Melaka
This project is about a study on the parts produce using silicon rubber mould. This study based on Rapid Prototyping (RP) concept where RP model named Master Pattern is designed. Design is done using (CAD/ CAM) modeling software system for 3D modeling and analysis. The Master Pattern consists of shape and features of triangular and circular protrusion as well as triangular and circular hollow cavity and the part features consists of sections with draft angle were designed using CAD software. This study investigates the surface roughness, dimensional accuracy, flatness and straightness of the products produced from the mould. Appropriate measuring equipment is later used for quality testing. Method used to obtain quality is study at metrology laboratory. The dimensional accuracy of the products was measured using a Digital Vernier Calliper. The Coordinate Measuring Machine (CMM) is used to measure the flatness and straightness. The Mitutoyo CV 500 Contour Measuring Instrument is used so measured the surface finish of the products show. There are significant effect on surface finish, dimensional accuracy and flatness as more products were produced using the silicone mould.
ABSTRAK

First and foremost, I would love to extend my prayer and thanksgiving to God for the wonderful blessings and spiritual guidance that matures and strengthens me as each days passes along the implementation of this study.

I would also like to express my deepest gratitude to my thesis supervisor, En. Hassan bin Attan for the guidance and advice throughout the process of this thesis writing. God bless you for your sincere thought and assistance.

My greatest gratitude also goes to Universiti Teknikal Melaka Malaysia (UTEM) for the privileges to complete my thesis proposal implementation and providing the platform. Not forgetting, the whole family for giving me the up most support all this while especially for my loving mother and late father. Without them, I would be nothing in this world. Last but not least, to all my fellow friends; I would like to say thank you for your friendship, encouragement and motivation.

Thank You.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Abstrak</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Content</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>viii</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 Background Project | 1 |
1.2 Problem Statement | 2 |
1.3 Objective | 3 |
1.4 Scope | 3 |

2. LITERATURE REVIEW

2.1 Introduction | 4 |
2.2 What is Stereolitography? | 5 |
2.2.1 Benefits of Stereolithography | 5 |
2.2.2 Applications of SLA Technology | 5 |
2.3 Rapid Prototyping | 6 |
2.3.1 Introduction Rapid Prototyping | 6 |
2.3.2 Classification Rapid Prototyping | 8 |
2.3.2.1 Advantages Rapid Prototyping | 8 |
2.3.2.2 Disadvantages Rapid Prototyping | 8 |
2.3.2.3 Application of Rapid Prototyping | 9 |
2.3.2.4 Basic Processes of Rapid Prototyping | 9 |
2.3.2.5 Rapid Prototyping Techniques | 11 |
2.4 Rapid Tooling
2.4.1 Introduction Rapid Tooling
2.4.2 Classification of Rapid Tooling
2.4.3 Advantages Rapid Tooling
2.5 Specification of Quality Product
2.5.1 The Quality of a Product
2.5.2 Calibration System
2.5.3 Numerical Information
2.5.3.1 Dimensional Accuracy Measuring Information
2.5.3.2 Flatness and Straightness Measuring Information
2.5.3.3 Surface Finish Measuring Information
2.5.4 Type of 13A Plugs, Socket-Outlets, Adaptors, and Connection Units.
2.5.4.1 Specification for Rewirable and Non-Rewirable 13A Plugs, Socket-Outlets, Adaptors and Connection Units.
2.5.4.2 Construction of Plugs
2.5.4.3 Design Specification 13A Plug
2.5.4.4 Choosing the Right Materials
2.5.5 Air Bubbles in the Products
2.5.5.1 Basic Steps to Produce Air Bubble Free Castings
5.5.6 Illustrating Shrinkage Rate
5.5.6.1 Effects of Temperature Adjustments
5.5.6.2 Effects of Pressure Adjustments
5.5.7 Quality Control
2.6 Machining
2.6.1 Vacuum Casting
2.6.1.1 Type of Vacuum Casting
2.6.1.2 Vacuum Casting UGM -500 Machines
2.6.2 Preparation of Making Mould Using Vacuum Casting
2.6.3 Tool of the Vacuum Casting Machine
2.6.4 Process Vacuum Casting
2.6.4.1 Continuous Vacuum Casting
3. METHODOLOGY

3.1 Introduction to Project Methodology 81
3.2 Project Planning using Flow Chart 82
3.3 Methodological Procedure 86
3.4 Project Implementation 86
3.4.1 Phase 0: Planning 86
3.4.2 Phase 1: Detail Design 87
3.4.3 Phase 2: Making/ Preparation Mould 88
3.4.4 Phase 3: Testing 89
3.4.5 Phase 4: Result and Analysis 89
3.4.6 Phase 5: Quality 90
3.5 Gantt Chart 86

4. EXPERIMENTAL METHODS

4.1 Fabrication Process 92
4.2 CATIA P3 V5R14 Model Creation © 93
4.2.1 Numerical Information for Master Pattern 94
4.3 Actual Product 95
4.3.1 3D-CAD Modelling 96
4.4 Making the Silicone Mould

4.5 Casting Process

4.6 Testing Product

4.6.1 Preparation of Surface Roughness Tester (SJ-301)

4.6.2 Preparation of Vernier Caliper Digital

4.6.3 The Preparation use Coordinate Measurement Machine (CMM).

5. RESULTS/ ANALYSIS / DISCUSSIONS

5.1 Dimensional Accuracy Results and Analysis

5.1.1 The Original Part

5.1.2 The Result of Sample Product

5.2 Surface Finish Results and Analysis

5.3 Flatness and Straightness Results and Analysis

5.4 Quality of the product

5.4.1 Types of Defects and Affect the Quality Product in Analysis

5.4.1.1 Effect and Defect Mould

5.4.1.2 Effect and Defect of the Products

5.5 Other Defects Results and Analysis

6. CONCLUSION AND RECOMMENDATION

6.1 Conclusion

6.2 Recommendation

REFERENCES

APPENDICES

A Gantt chart

B Standard of Plug and Analysis

C Standard Measurement of Analysis
LIST OF TABLES

2.1 The Tolerance of the Digital Caliper 67
2.2 Comparative Advantages and Disadvantages Over ABS 74
2.3 Thermo Plastics Include 75
2.4 Process Chains Options for Mould Manufacturing 76
5.1 Basic Dimension Original Plug for Measure DA1, DA2, and DA3 128
5.2 Basic Dimension Plug for Measure Length (DA1), Width (DA2), and Height (DA3) 130
5.3 Dimension Rectangular hole (A). Accuracy (mm) for Height (DA4) 136
 Width (DA5), and Length (DA6) of Rectangular hole (A).
5.4 Dimension Accuracy (mm) for Height (DA7), Width (DA8) and Length (DA9) of Rectangular hole (B) 141
5.5 Dimension Accuracy (mm) for Diameter (DA10) and Height (DA11) 146
 of Circular hole
5.6 The results Surface Roughness for Ra (µm) C1 and C2 and Ry (µm) 153
 C1 and C2.
LIST OF FIGURES

2.1 Schematic Diagram of Stereolithography 11
2.2 Schematic Diagram of Laminated Object Manufacturing 13
2.3 Schematic Diagram of Selective Laser Sintering 14
2.4 Schematic Diagram of Fused Deposition Modeling 15
2.5 Schematic Diagram of Solid Ground Curing 16
2.6 Schematic Diagrams of Ink-Jet Techniques 17
2.7 Classification of Rapid Tooling Processes 20
2.8 The Straightness Symbol 25
2.9 Flatness Symbol 25
2.10 Typical Flatness Disturbances in Steel Products 28
2.11 Arithmetic Mean Value 30
2.12 Maximum Roughness Height 31
2.13 Ten point Height of Irregularities 31
2.14 Experimental Drawing Model (measurement in mm) 33
2.15 Straightness Assumption 34
2.16 Dimension and Disposition of Pins 37
2.17 Test Plug for Temperature Rise 38
2.18 Components of 13A Plug 39
2.19 The Inside Case 44
2.20 Effects of Pressures Adjustment 45
2.21 Defect Colorant of the Product 46
2.22 Vacuum Casting Machine UGM -500 48
2.23 Control Panel Machine 49
2.24 Side of Machine Vacuum Casting 51
2.25 Preparing the Model 52
2.26 Suspending the Model in the Box 53
2.27 Stirring the Silicone 53
2.28 Degassing the Silicone 54
4.19 The Process Mixture with Component A and B.
4.20 Fill the Whole Resin into the Mold
4.21 The New Product
4.22 The Calibration before Measure Product
4.23 Measured the Product
4.24 Print out the Result
4.25 This Position of the Surface Roughness
4.26 Vernier Caliper Digital
4.27 Measure the Product
4.28 Basic Geometry Dimension for the Part Original Part (Plug)
4.29 This is Side of Measure Straightness (a) and Measure the Flatness (b)
4.30 The Setting to Calibrate
4.31 The Probe to Calibrate
4.32 The Control Panel Axis X, Y, Z
4.33 Measure the Part
5.1 Graph of the Dimensional Accuracy (mm) for the Length (DA1)
5.2 Graph of the Dimensional Accuracy (mm) for the Width (DA2)
5.3 Graph of the Dimensional Accuracy (mm) for the Height versus the Number of Castings
5.4 Graph of Dimensional Accuracy (mm) for Length (DA4) of the Rectangular Hole (A)
5.5 Graph of Dimensional Accuracy (mm) for Width (DA5 and DA7) of the Rectangular Hole A and B.
5.6 Graph of Dimensional Accuracy (mm) for Height (DA6 and DA9) of the Rectangular Hole A and B.
5.7 Graph of Dimensional Accuracy (mm) for Length DA8 of the Rectangular Hole B
5.8 Graph of Dimensional Accuracy (mm) for Diameter D10 of the Circular hole
5.9 Graph of Dimensional Accuracy (mm) for Height (D11) of the Circular hole
5.10 Graph of Surface Finish, Ra (µm) 157
5.11 Graph of Surface Finish, Ry (µm) 157
5.12 Result of the Flatness and Straightness (a). 160
5.13 Result of the Flatness and Straightness (b). 161
5.14 Flatness (mm). 162
5.15 Straightness for S1, S2, and S3. 162
5.16 The Runner 164
5.17 (a) The Mold and (b) Tape all the Sideline of Product 165
5.18 (a) Cutting the Mold and (b) Effect the Wrong Cutting 166
5.19 The Surface Part is Not Good 167
5.20 The Flashing of the Product 168
5.21 Crack of the Product 168
5.22 This Effect from Air Bubbles 169
5.23 Effect the Runner Location at the Products 170
5.24 Visual Observation for Resulting Products 171
5.25 Graph of Other Defects for Twenty-One Duplicated Products 172
LIST OF ABBREVIATIONS

CAD – Computer Aided Design
CMM – Coordinate Measuring Machine
3D – Three Dimensional
HDPE – High Density Polyethylene
LDPE – Low Density Polyethylene
MJS – Multiphase Jet Solidification
PP – Polypropylene
Ra – Arithmetic Mean Value
RP – Rapid Prototyping
RT – Rapid Tooling
RTV – Room Temperature Vulcanizing Rubber
Ry – Maximum Roughness Height
Rz – Ten-Point Height of Irregularities
SGC – Solid Ground Curing
SLA – Stereolithography
SLS – Selective Laser Sintering
UV – Ultra-Violet
CMM – Coordinate Measuring Machine
CHAPTER 1
INTRODUCTION

This report is about a project on “A Quality Study of Parts Produced by Silicon Rubber Mould using Vacuum Casting Process”. In this chapter, the background of the project, problem statement, objectives, scope, and report outline are explained.

1.1 Background Project

There are many types of products made from machines nowadays. It follows the design made beforehand before they are produced. Rapid Tooling (RT) is a new technique driven by Rapid Prototyping. In the development Rapid Tooling processes, there is a need for faster, better, and less expensive tooling solutions. The term Rapid Tooling typically used to describe a process that either uses a Rapid Prototyping process directly to fabricate tools for a limited volume of prototypes. There is tremendous interest in Rapid Tooling solutions these days for product design and manufacturing. In the indirect method, Rapid Tooling masters patterns to produce a mould such as silicone rubber mould. To make it more accurate, tooling solutions has resulted in the development of many Rapid Tooling methods such as vacuum casting process. The accuracy of these processes depends in part on the accuracy of the Rapid Tooling process used to create the pattern. (Noraini.R, 2006) Materials also affect the choice of the most suitable Rapid Tooling techniques, which appropriate for each application, i.e. indirect tooling or direct tooling. (Dr Rennie et al, 2002) To make a mould, one must know which materials to use, calculation in mould making and its properties. To produce the parts by using vacuum casting process was into consideration.
In this project, the qualities of the parts produced were visually observed and measured. These include the following features, dimensional accuracy, surface roughness, flatness roundness, and straightness. Therefore, to take into account all the meaning above, the project taken is regarding the quality study of the parts produced using silicone rubber mould via vacuum casting process and its development. In addition, it is also to produce a high quality mould for good percentage accuracy and repeatability, or consistency, in producing products that are of high quality at any time and within the dimensional zone.

1.2 Problem Statement

This research is about a quality study of parts produced by silicon rubber mould using vacuum casting process. Most of the current focus is in increasing the quality of part produced by using the silicone mould. By accomplishing these facts, the parts produced, a 13-Ampere plug, can be produced at a consistent rate in term of its quality of dimensions. To reduce the problem of current silicone rubber mould, such as reducing the time and cost in the installation and production, prototypes are also useful for testing a design, to see if it performs as desired or needs improvement. It is because to get the highest achievable quality. The method used is by casting silicone moulds, made in the shape of a 13-Ampere plug is carefully prepared, to ensure a high quality finish to the surface and the definition of the parting planes.

Vacuum casting is a process to evaluate molding designs without committing to the delays and expense of production tooling. The system is capable of reproducing intricate designs with complex internal detail and surface finish comparable to injection-molded components and is suitable for producing a limited quantity of working prototypes or production parts. Standard lead-time is six (6) working days from receipt of masters or CAD data to production. (Kunstmaan, 2008) So, by ensuring the quality is maintained and improved, the installation and production of the mould can be optimized in a certain period.
1.3 **Project Objective**

The purposes of this project are:

(a) To understand about the quality of the parts produced using silicone rubber mould via vacuum casting process in term of dimensional accuracy, surface roughness, flatness, and straightness of the resulting parts.

(b) To investigate the factors that effect and defect of the parts produced using silicone rubber mould via vacuum casting.

(c) To understand operation produce parts using vacuum casting process.

1.4 **Scope of Study**

The scope project will focus on:

(a) Produce the parts using silicone rubber mould.

(b) Study the quality product when using silicon rubber mould.

(c) Analyzed the results of parts produced in term of dimensional accuracy, surface roughness, flatness, and straightness.
CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

A literature review is a body of text that aims to review the critical points of current knowledge on a particular topic. The literature review usually precedes a research proposal, methodology and results section. The literature reviews is the analysis the scientist at the past years ago about the project or produce the product.

In a way, literature review is important to find out about the information and uses to explain a product. It also gives some idea about the current project. Literature review is also important since it can be as references in built up for a new product. Besides that, the background of the project will be reviewed and can determine the best alternative to upgrade the current project. Literature review is defined as evaluative report of information found in the literature related to selected area of study. The review should describe, summarize, evaluate, and clarify this literature. It should give a theoretical base for the research and help to determine the nature of the research. Therefore, for his project, the literatures review by source such as from journal, book, internet, and others.

In this project, the focus about a quality study of parts produced by silicone rubber using silicone rubber mould via vacuum casting process in term of dimensional accuracy, surface roughness, flatness, and straightness.
2.2 What is Stereolithography?

Stereolithography (SLA) is a "Rapid Prototyping" process that produces physical, three-dimensional objects, a "conceptual model," or "master pattern". Most produced the parts from computer solid model are "3D CAD file", and "Master Model". A stereolithography machine uses a computer-controlled laser to cure a photosensitive resin, layer by layer, to create the 3D part. Producing a pre-production SLA prototype of a part can greatly added the geometric visualization of a product, as well as communication between project team members. Stereolithography is fast, allowing prototypes to make in a matter of days, and the complexity of the model is seldom a factor. (Jacobs, P.J. et. al, 1998).

2.2.1 Benefits of Stereolithography.

Below show the benefits of stereolithography. They are:

(a) Crisp, highly-detailed pieces
(b) Speed of delivery (usually 2-3 days)
(c) Tolerances within .004"/inch

2.2.2 Applications of SLA Technology

(a) Aesthetic and conceptual models
(b) Parts requiring detail & accuracy
(c) Master patterns for castings and secondary processes
(d) Medical models
Stereolithography is a master models that can be used for "master patterns" when it is time for metal castings. There is easy modifying to accommodate any last minute changes. Additionally, SLA models can be used for photo-optic stress analysis as well as dynamic vibration analysis, which further extend engineering design capabilities. SLA is really "Rapid Modeling" since the objects generated from existing photosensitive resins or photo polymers do not have the physical, mechanical, or thermal properties typically required of end use production material. There is much ongoing research and development in the area of durable materials. (Jacobs, P.J. et. al, 1998).

2.3 Rapid Prototyping

2.3.1 Introduction Rapid Prototyping

Over the last several years, Rapid Prototyping techniques have grown seriously. They reduce in a considerable manner for the manufacturing time for parts, and lead to a faster production phase-shift. The processes associated with Rapid Prototyping techniques make to obtain viable plastic injection moulds in one day. This induces a great reduction of implementation time for production. (Augustian, 1999)

The classification of technologies, Rapid Prototyping (RP) can automatically construct physical models from Computer-Aided Design (CAD) data. These "three dimensional printers" allow designers to quickly create tangible prototypes of their designs, rather than just two-dimensional pictures. Such models have numerous uses. They make excellent visual aids for communicating ideas with co-workers or customers. In addition, prototypes can use for design testing. In addition to prototypes, RP techniques can also used to make tooling (referred to as rapid tooling) and even production-quality parts (rapid manufacturing). (Jacobs, P.J. et. al, 1998) Rapid prototyping technologies provide prototypes of very complex part geometry and it is directly from three-dimensional computer aided design (CAD) software. The processes build prototypes in a wide variety
of materials such as polymer, wax, and paper. In the contrast to traditional machining
methods, the majority of rapid prototyping systems tend to fabricate parts using a
process of addition and removal of material. (King, and Tansey, 2002)

Type of fabrication is unconstrained by the limitations attributed to conventional
machining approaches. These types are no problems of tool clash at the any shape of
geometry can essentially to reproduce at the high degree of accuracy. Rapid prototyping
techniques can be produce high quality three-dimensional parts, of varying degrees of
complexity, size and shape because it is various photochemical, lasers sintering, guided
deposition, extrusion layering, or sculpting processes. Rapid prototyping (RP) has
emerged as a key enabling technology with its ability to shorten product development
and manufacturing time. (Tansey, 1995)

Rapid Prototyping is a new technology that has profound effect on the product
development process of design and manufacturing industries. It is called prototyping
because it can prototype parts rapidly in cases, in hours in days or weeks. So rapid
prototyping, tooling and manufacturing (RPTM) is term used these days. (Ashley, 1995)
To created technologies the Rapid Prototyping industries in the late 1980s. Rapid
Prototyping (RP) technique generated the replacing traditionally made patterns but the
Rapid Prototyping not only reduces lead-time but allows for comprehensive design
evaluations to be early in the development stage for improved design quality in a
fraction of the time for traditional prototyping. The application of Rapid Prototyping to
the product development process has shown a sixty percent decrease in lead-time over
traditional methods. (Choi and Samavedam, 2001)