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Abstract—Although hybrid nanoelectronic memories (hy-
brid memories) promise scalability potentials such as ultra-
scale density and low power consumption, they are expected to
suffer from high defect/fault density reducing their reliability.
Such defects/faults can impact any part of the memory
system including the memory cell array, the encoder and
the decoder. This article presents a high-performance, fault-
tolerant architecture for hybrid memories; it is based on
a combination of two techniques: (i) an error correction
scheme that tolerates both random and clustered faults in
memory cell array and (ii) an on-line masking incorporated
into the decoder to tolerate faults in the decoder. Moreover,
the decoding process is optimized for area and performance by
reversing the decoding sequence. Experimental results show
that the proposed architecture realizes a higher performance
and competitive reliability level at a comparable overhead as
compared with the state-of-the-art. For example, the archi-
tecture decodes 5× faster and provides 0.7% better reliability
(assuming 10% fault rate) at the cost of similar area overhead
(for 1024-bit memory word) as compared to Reed-Solomon
code.

Index Terms—Error correction codes, fault tolerance, hard-
ware redundancy, hybrid nanoelectronic memories.

I. INTRODUCTION

It is well-acknowledged that CMOS technology is expe-
riencing difficulties to sustain the scalability in producing
smaller, higher-capacity, less-power and cheaper memories.
One promising solution is to use non-CMOS devices (in-
stead of CMOS or capacitor) as storage elements. This
is the main idea behind hybrid nanoelectronic memories
(hybrid memories) where the non-CMOS memory cell
array can also be stacked on the top of scaled CMOS
peripheral circuits. Hybrid memories, such as molecular-
based memories [1]–[4] and carbon nanotube-based mem-
ories [5]–[8], offer scalability potentials better than that of
existing memories. However, they will suffer from signifi-
cant faults (permanent, intermittent and transient) [9]–[11].
In addition, a single defect/fault might induce clustered
errors impacting adjacent memory cells and transistors
in such circuits [10], [11]. Therefore, designing reliable
hybrid memories require not only to protect the non-CMOS
memory cell array from clustered faults, but also the CMOS
peripheral circuits.

Published work on hybrid memory reliability has ap-
plied fault-tolerant schemes such as error correction codes
(ECCs) [1], [12]–[17], hardware redundancy [13], [16],

[18], reconfiguration [12], [14] and re-execution [15], to-
gether with supporting scheme like scrubbing [15], defect
map [19], [20] and tagging mechanism [20]. However,
most of the published work focuses only on the memory
cell array while assuming that the other memory parts
are reliable. This assumption is no longer valid for hybrid
memories because even at 130nm CMOS technology node,
logic circuits have exhibited almost similar fault rate to
that of unprotected memories [21]. To the best knowledge
of the authors, there is only a single published article [15]
that addresses fault tolerance for the entire hybrid memory
system; the authors in [15] combine an ECC, re-execution
and scrubbing to tolerate faults that induce random errors
in the memory cell array, encoder and decoder. However,
as clustered errors are also expected to occur in hybrid
memories [10], [11], an appropriate fault-tolerant scheme
to deal not only with random errors but also with clustered
errors is required.

This article presents a high-performance, fault-tolerant
architecture to tolerate faults that induce clustered and
random errors in hybrid memories, thereby improve their
reliability. The architecture is based on a combination of
two techniques: (i) an error correction scheme (based on
Redundant Residue Number System code and double mod-
ular redundancy) that tolerates both random and clustered
faults in the memory cell array, and (ii) an on-line masking
to tolerate faults in the decoder. Moreover, the decoding
process is optimized for area and performance by reversing
the decoding sequence. Experimental results show that the
proposed architecture realizes a higher performance and
competitive reliability level at a comparable area overhead
as compared with the state-of-the-arts. The main contribu-
tions of this article are:

• A fault-tolerant architecture that improves the reliabil-
ity of a hybrid memory system including the memory
cell array and the decoder.

• A high-performance error correction scheme that cor-
rects clustered and random errors in the memory cell
array.

• A fault-tolerant decoder that masks transient and in-
termittent faults in the decoding circuits.

• A reverse decoding process that results in a cost-
effective hardware implementation.

The rest of the article is organized as follows. Section II
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Figure 1: Architecture of CMOL memory

briefly overviews hybrid memory architecture and some of
traditional fault-tolerant schemes, which will be used in this
work. Section III introduces the memory architecture that
tolerates both clustered and random faults in memory cell
array using error correction code (ECC) scheme. Section
IV improves the architecture by incorporating an on-line
masking into the decoder and providing a new decoding
process. Section V presents the simulation results for ECC-
based memory architecture (presented in Section III). Sec-
tion VI presents these for the improved architecture and a
comparison to the related work. Section VII concludes this
article.

II. BACKGROUND

This section briefly discusses the architecture of one of
the hybrid memories known as CMOS/Molecular (CMOL)
memories [1], [2], [12]. CMOL memories provide the
utmost data storage capacity as huge as 1Tbit/cm2. The
description of the architecture includes the structure and
operations, as well as the potentials and challenges. There-
after, three traditional fault-tolerant schemes used in the
work including the Redundant Residue Number System
code, double modular redundancy, re-execution and Muller
C-gates will be covered.

A. Hybrid memory architecture
Figure 1 shows the architecture of CMOL hybrid mem-

ories where a non-CMOS memory cell array is fabricated
at the top of CMOS peripheral circuits. The memory cell
array consists of nanowires and reconfigurable two-terminal
nanodevices. Nanowires fabricated from semiconductor,
metal, or carbon nanotubes build up a crossbar-based lo-
cal interconnect of the memory cell array. Two-terminal
nanodevices such as memristor, organic molecules, single
electron junctions, memristor, etc. are embedded at each
nanowire junction to function as a single memory cell.
These non-CMOS devices, nevertheless, are incapable to
perform the logical functions; for instance, amplification,
inversion, etc. Therefore, nanoscale CMOS is required to
function as peripheral circuits such as encoder, decoder,
global interconnects, etc. Both circuits are connected using
two sets of CMOS-to-nano vias (CNVs). Short CNVs
and tall CNVs connect the lower and upper nanowires,
respectively, to the peripheral circuits.

In order to write to and read from a memory cell,
sufficient voltages are applied from the CMOS peripheral
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Figure 2: RRNS codeword structure

circuits to the non-CMOS memory cell array [1]. For
instance, a positive voltage larger than the threshold voltage
of the two-terminal nanodevices used as the memory cells
will write logic 1. On the other hand, a negative voltage
smaller than the threshold voltage of the two-terminal nan-
odevices will write logic 0. Read operation is accomplished
by applying a voltage at a shorter period than that of
writing, and the current flow is sensed and is converted
into logic states.

As aforementioned, hybrid memory is an emerging tech-
nology that promises many benefits such as huge data
storage capacity [1], [4], [6], low power consumption
per unit devices [1], [4], less complex fabrication of the
crossbar memory array [1], [6]. However, since hybrid
memories are extremely dense and the devices used to build
up the circuits are incredibly tiny and sensitive, they are
subject to different faults. These faults might emerge from
the manufacturing defects, or the operational disturbances
due to non-environmental conditions, or the operational
disturbances due to environmental conditions. They can
occur in any part of the hybrid memories: in the non-CMOS
memory array (e.g., missing, impure organic molecules,
broken nanowires, electromigration, bit upset, crosstalk,
etc.) [2], [4], [6], [7], within the CMOS-to-nano vias (e.g.,
misalignment, damage, imperfect shape, crack, etc.) [2], [4]
or in the CMOS peripheral circuits (e.g., stuck-open, stuck-
closed, bit upset, bit latch up, etc.) [21].

Note that the permanent (persistent) faults are due to the
manufacturing defects, the intermittent (repetitive) faults
are due to non-environmental disturbances and the transient
(temporal) faults (also referred to as soft errors) are due to
environmental disturbances [22].

B. Traditional fault-tolerant schemes
1) Redundant residue number system code: Redundant

Residue Number System (RRNS) code comprises two sets
of symbol-oriented encoded data that form a codeword
as shown in Figure 2 [23]; each symbol is referred to
as residue xi, where 1≤i≤n and n is a positive integer.
The first set is referred to as non-redundant residues that
represent the dataword (input data); whereas, the second
set is referred to as redundant residues that represent the
checkword (for error detection and correction). The non-
redundant residues consist of k residues and the redundant
residues consist of (n–k) residues, where k and n are
positive integers. This code detects u=n–k and corrects
t=u

2=
n−k
2 errors in a codeword.

Each residue of the RRNS code is encoded by perform-
ing a modulo operation of an input data X to a set of
moduli mi, expressed as xi=|X|mi

where 1≤i≤n [23].
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The bit size of each residue is defined as bi=⌊{log2(mi–
1)+1}⌋ bits; thus, an RRNS codeword has the bit size
equal to

∑

n
i=1bi. RRNS decoding performs detection,

followed by correction if errors are detected in the read
data. An error-free RRNS codeword is always within the
operation legitimate range LR=2d–1 when it is decoded,
where d is a positive integer denoting the memory word
size; the decoded data is sent out of the memory without
requiring any correction. An erroneous RRNS codeword
will have a value larger than LR; it requires a correction
process where an iterative correction is executed to recover
a valid data with a maximum of Cn

t = n!
t!(n−t)! iterations [24].

During this phase, t residues are discarded in each iteration
and the calculation of (n−t) residues (along with their
corresponding parameters) is performed. Any recovered
data less than LR is regarded as the valid data and is
sent out of the memory. However, if the decoded data is
beyond LR after all iterations, an uncorrectable signal will
be flagged (to indicate that the decoder cannot correct the
erroneous data) and the decoded data is ignored. RRNS has
many advantages such as [23], [24]:

• It possesses correction capability of clustered and
random errors.

• It can be encoded based on the low-cost moduli that
enable small area overhead and fast operation.

• Its encoder and decoder sub-units consist of modular
circuits that operate in parallel resulting in fast decod-
ing performance.

2) Double modular redundancy: Double modular redun-
dancy (DMR) is a hardware redundancy scheme where
two identical circuits operate in parallel and their cor-
responding results are compared, as depicted in Figure
3. Any disagreement from the comparison indicates that
faults have occurred. DMR has the advantages of detecting
faults occurring in one of its redundant parts and it has
a parallel execution allowing high performance operation.
In addition, it requires a simple hardware implementation.
DMR is a variant of N-modular redundancy (NMR) with
majority voter where N is usually an odd integer. NMR has
the capability to mask errors due to faults in some of its
modules.

The advantages of DMR are as follows:
• It detects faults occurred in one of its redundant parts.
• It executes in parallel allowing high performance op-

eration.
• It requires simple hardware implementation.
3) Re-execution: Re-execution is a time redundancy

scheme that computes the same data for more than one
time. The corresponding results of the multiple executions
are stored prior to a comparison.
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Figure 4: Muller C-gate (a) symbol (b) truth table

The advantages of re-execution are as follows:
• It can mask faults of one of its executions.
• It requires small, simple hardware implementation.
4) Muller C-gate: Muller C-gate is a simple circuit

commonly employed in asynchronous logic applications to
mask glitches [25]. Figure 4(a) and (b) shows its symbol
and its truth table, respectively. This logic gate only changes
its output, to be the same as the input logic value, when
the states of all inputs match. On the other hand, the output
remains in its previous state if the inputs are dissimilar.

The advantages of Muller C-gate are as follows:
• It can mask glitches (faults) in logic circuits.
• It requires simple hardware implementation.

III. ECC-BASED FAULT-TOLERANT ARCHITECTURE

This section describes the ECC-based architecture devel-
oped to tolerate both random and clustered faults in mem-
ory cell array while assuming that no faults occur in the
decoder. As shown in Figure 5(a), ECC-based architecture
comprises:

• CMOS encoder – it encodes the input data using a
modified version of RRNS code referred to as Double
Three-Residue (D3R) code.

• CMOS decoder – it decodes the D3R code into the
output data. The decoding process and the decoding
circuit as shown in Figure 5(b) and (c) will be ex-
plained later in the section.

• Non-CMOS memory cell array – it stores D3R code-
words (x1,x2,x3 and their duplicate x′

1,x′

2,x′

3; see
Figure 5(a)).

The rest of this section first will discuss the D3R encod-
ing process, followed by its circuit. Thereafter, the decoding
process and circuit will be covered.

A. D3R encoding process
A Double Three-Residue (D3R) code consists of

an RRNS codeword (C=DW+CW ) and its duplicate
(C ′=DW ′+CW ′) as depicted in Figure 6. The D3R code
is encoded based on the moduli set mi={2

d

2 –1, 2 d

2+1–
1, 2

d

2+1} [17] where d is a positive integer representing
the memory word size. Such a moduli set is considered
as the low-cost moduli, which results in faster performance
and lower area overhead [23]. The first two moduli are used
to generate the two-residue dataword DW=x1, x2 and its
duplicate DW ′=x′

1, x
′

2, while the third modulus is used
to produce the single-residue checkword CW=x1 and its
duplicate CW ′=x′

1. The bit size of the D3R codeword is
bD3R = 2× (⌊log2(m1 − 1) + 1⌋+ ⌊log2(m2 − 1) + 1⌋+
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⌊log2(m3 − 1) + 1⌋) where m1, m2 and m3 are the mod-
uli.

Three moduli are used to ensure the detection of a single
erroneous residue, i.e., u=n–k=3–2=1. This implies that
each D3R codeword part (C and C ′) is able to detect
a single erroneous residue. In case of faults impacting
only one of the D3R parts (yet another one is fault-
free), this code can tolerate up to three erroneous residues.
Such capability is better than that of the error correction
capability possessed by RRNS and Reed-Solomon [16],
assuming that the codes are composed of an equal number
of residues. For example, let us assume an RRNS code con-
sists of six residues (n=6), where two residues represent the
dataword (k=2) and four residues represent the checkword
(n−k=4). With this setting, RRNS can only correct up to
n−k
2 = 6−2

2 =2 residues [23], [24].

D3R encoding circuit
The bottom-left part of Figure 5(a) shows the block

diagram of a D3R encoder constructed of three mod-
ulo circuits. These three modulo circuits receive a d-
bit input word and generate the corresponding residues
simultaneously. Modulo1 and Modulo2 generate the two-
residue dataword x1 and x2, respectively, which then
form DW=x1, x2; while Modulo3 generates a single-
residue checkword CW=x3. Then, the original codeword
C=DW+CW is duplicated (C ′=DW ′+CW ′) creating
a D3R codeword. The duplicate dataword and checkword
parts are simply generated by wires and buffers.

B. D3R decoding process
As mentioned in Section II-B1, RRNS decoding requires

an iterative correction when errors are detected; thus, it
impacts the performance of the decoder. However, this is
not the case for D3R as it does not discard any residues

during the correction phase but swaps between the two
codeword parts. The maximum number of swapping is
equal to half of the number of residues in a codeword,
i.e., n

2 (as compared to Cn
t for RRNS). Hence, due to

its structure and decoding nature, D3R decoding is faster
than that of RRNS. The following steps describe the D3R
decoding [17]:

1) Convert C=x1,x2,x3 and C ′=x′

1,x′

2,x′

3 into binary
data B1 and B′

1;
2) Compare B and B′ to the operation legitimate range

LR=2d−1 where d is the memory word size;
3) If (B=B′)≤LR, read out B or B′; Break

else if B≤LR, read out B; Break
else if B′≤LR, read out B′; Break

else go to Step 4;
4) Check if the maximum number of swapping has been

reached. If “yes” go to Step 6, else go to Step 5;
5) Swap one of the residues between C and C ′. Go to

Step 1;
6) Ignore the output data and invoke a flag indicating

that the data is uncorrectable.

Step 1 performs a conversion of D3R code into binary
data. This conversion can be accomplished using either
Chinese Remainder Theorem (CRT) or Mixed Radix Con-
version (MRC). Because CRT is based on large modulo
constants that require a complex circuit, MRC is used in
this work; the latter conversion algorithm also speeds up the
simulation work [23]. MRC is expressed as follows [23]:

X = v1 + v2m1 + v3m2m1 + ...+ vn

n−1
∏

i=1

mi (1)

where v1=x1, mi are the moduli and vi are the mixed radix
digits calculated as:

vi =
∣

∣

(

((xi − v1)× g1i) .....− v(i−1)

)

× g(i−1)i

∣

∣

mi

(2)

where xi=|X|mi
and g(i−u)i are the modular multiplica-

tive inverses of m(i−u) with respect to mi satisfying
|m(i−u)×g(i−u)i|mi

=1; 2≤i≤n and 1≤u≤n−1. Examples
of encoding and decoding calculation are available in [16],
[24].
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Table I
Residues Set for Each Iteration of D3R Correction

Number of Residues
Iteration C C’

1 x
′

1, x2, x3 x1, x′

2, x′

3

2 x1, x′

2, x3 x
′

1, x2, x′

3

3 x1, x2, x′

3 x
′

1, x′

2, x3

Step 5 swaps the residues between the two D3R code-
word parts. Table I gives the swapped residue combinations
for each iteration. For example, in the first iteration the
swapping is done in such a way that x1 becomes a part of
C ′ and x′

1 a part of C. Similar steps are performed to the
second and third iterations. The residue to be swapped is
selected at random, i.e., no fixed rule.

C. ECC-based decoder circuit
The bottom-right part of Figure 5(a) depicts the block

diagram of the ECC-based decoder, which consists of two
detectors and a multiplexer. As illustrated in Figure 5(b),
each ECC-based detector is formed by an RRNS-to-binary
converter and a comparator. The output signals of both
detectors are multiplexed prior to read out of the memory;
the selection is controlled by the Correct and Correct’
signals.

During the detection phase, Converter converts
C=x1,x2,x3 into a binary word B, while Converter’
converts C ′=x′

1,x′

2,x′

3 into a binary word B′. The binary
words B and B′ are then fit into the comparators; they
are compared to the operation legitimate range LR= 2d−1
(where d is memory word size) to determine the validity
of the read codeword. If no errors are detected, then both
B and B′ will be within the operation legitimate range
resulting into high Correct and Correct’ signals. This in
turn sets the Valid signal to high indicating that the output
of the multiplexer is a valid read data. However, if faults
affect B (B′) while B′(B) is fault-free, then the Correct
(Correct’) signal is set to high so that the correct data
B(B′) is forwarded to Dataout signal; note that in this
case the Valid signal is set to high indicating that the
Dataout signal is valid. When both B and B′ are faulty
(i.e., beyond LR), then a correction action is initiated; the
converters of Figure 5(b) will then convert the residue
sets of the second and the third column of Table I to B

and B′, respectively. During each iteration, the value of
both of B and B′ are checked to determine if they are
within the legitimate range (i.e., corrected value); if it is
the case, then the corrected value is forwarded to Dataout.
However, if after all iterations the converted are beyond the
legitimate range, then both Correct and Correct’ signals
will be set to low; this in turn sets the Valid signal to low
indicating that the Dataout signal is not valid.

Figure 5(c) shows the functional units of the converters
that produce the binary data (i.e., the implementation of
Eq. 1 and 2). Each converter consists of two mixed radix
digit units (formed by subtracters and multipliers), two
multipliers and an adder. As mentioned in Section III-B,
the D3R decoding is based on the Mixed Radix Conversion

Table II
Multiplicative Inverses for ECC-based Architecture

Memory Moduli Multiplicative
word, inverses
d m(i−u) mi g(i−u)i

16
m1=255 m2=511 g12=509
m1=255 m3=512 g13=255
m2=511 m3=512 g23=511

32
m1=65535 m2=131071 g12=131069
m1=65535 m3=131072 g13=65535
m2=131071 m3=131072 g23=131071

64
m1=4294967295 m2=8589934591 g12=8589934589
m1=4294967295 m3=8589934592 g13=4294967295
m2=8589934591 m3=8589934592 g23=8589934591

(MRC) algorithm. Typically, MRC executes an RRNS
codeword starting from the most significant residue (MSR)
and ending with the least significant residue (LSR). In this
article MSR is x1 and LSR is x3. Besides these residues,
other parameters are required including the moduli mi and
modular multiplicative inverses g(i−u)i where i and u are
integers (see Eq. 1 and 2). These parameters can be pre-
calculated and are given in Table II for different memory
words. g(i−u)i is the input to the two mixed radix digit
units in the converter; see Figure 5(c).

IV. IMPROVED-BASED FAULT-TOLERANT
ARCHITECTURE

The ECC-based architecture described in the previous
section tolerates both random and clustered faults in the
memory cell array. In this section, the architecture will be
extended so that it can tolerate faults in the decoder as well
[18]. According to [26], transient faults in combinational
logic nodes closer to the output pins have more impact
than other circuit parts. Inspecting Figure 7(a) reveals that
the decoder/multiplexer is the closest unit to the output
pins. Thus, making this unit fault tolerant will improve the
overall reliability of the memory architecture. The bottom-
right part of Figure 7(a) illustrates the block diagram
of the Improved-based decoder comprising two modified
detectors and a group of Muller C-gates. The decoding is
modified both in terms of its circuit implementation and
its decoding process. The rest of this section first will
discuss the improved decoding implementation; thereafter,
the decoding process and the Muller C-gates.

A. Improved decoding circuit
The decoding process is based on: (i) the multiplication

of residues ri and multiplicative inverses g(i−u)i where
i and u are integers, (ii) the subtraction, and (iii) the
summation; see Eq. 1 and 2. Making the g(i−u)i values
smaller reduces the multiplication complexity. Moreover,
there is no need for multiplication if the g(i−u)i values are
made equal to 1, and there are only shift operations if the
g(i−u)i values are power of 2. These are the basic ideas
used to develop the new decoder.

To explain how the new g(i−u)i values are generated,
let us assume the moduli set mi for 16-bit memory word
(see Table II for d=16); herein, mi={255, 511, 512} where
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Table III
Multiplicative Inverses for Improved-based Architecture

Memory Moduli Multiplicative
word, inverses
d m(i−u)(new) mi(new) g(i−u)i(new)

16
m1(new)=512 m2(new)=511 g12(new)=1
m1(new)=512 m3(new)=255 g13(new)=128
m2(new)=511 m3(new)=255 g23(new)=1

32
m1(new)=131072 m2(new)=131071 g12(new)=1
m1(new)=131072 m3(new)=65535 g13(new)=32768
m2(new)=131071 m3(new)=65535 g23(new)=1

64
m1(new)=8589934592 m2(new)=8589934591 g12(new)=1
m1(new)=8589934592 m3(new)=4294967295 g13(new)=2147483648
m2(new)=8589934591 m3(new)=4294967295 g23(new)=1

255 is the most significant moduli (MSM) and 512 is
the least significant moduli (LSM). In the new design,
however, these moduli are put in the opposite sequence
where 512 becomes the MSM and 255 the LSM; hence
mi(new)={512, 511, 255}. With these values, the new mul-
tiplicative inverses will be calculated using the equation
|mi×g(i−u)i|m(i−u)

=1; see Eq. 2. Note that this calculation
is based on a trial and error [23], i.e., increasing the g(i−u)i

value by one in each attempt. Substituting m1(new)=512,
m2(new)=511 and g12(new)=1 result in |512×1|511=1,
meaning that the g12(new)=1 is the desired value. This is
also the case for m2(new)=511 and m3(new)=255, where
g23(new)=1 is the desired value. However, substituting
m1(new)=512 and m3(new)=255 with g13(new)=1 result
in |512×1|255=2; in this case g13(new)=1 does not satisfy
the RRNS uniqueness requirement [23]. Yet, after several
attempts the desired multiplicative inverse is obtained, i.e.,
g13(new)=128, which is a power of 2.

It is interesting to note that the two new modular multi-
plicative inverses g12(new)=g23(new)=1 regardless of the
memory word size, and g13(new)=2

d

2−1 where d is the
memory word size. This significantly reduces the decoding
implementation as compared to the conventional design.
Table III gives the new modular multiplicative inverses for
different memory word sizes.

B. Improved decoding process
In addition to simplifying the decoding circuit, the de-

coding process has been modified in order to improve the
overall memory reliability. For the decoding process of Fig

5(a), each detector requires up to three iterations to recover
the read data in case of a fault; see Table I. In the improved
design, each detector will execute up to six iterations; i.e.,
each detector will execute the RRNS-to-binary conversion
for all six residue sets shown in Table I. Note that the
execution of a next iteration is needed only if the obtained
converted data is larger than the legitimate range. It is
clear that the new decoder requires up to twice as many
iterations as the former decoder, which in turn impacts the
performance. To compensate for this performance loss, the
decoding process is modified and made cost-efficient using
a reversing decoding process; this is explained next.

As mentioned before, the new decoding circuit reverses
the MSM and LSM as compared to that of ECC-based
architecture. Therefore, the decoding process has to be
reversed as well. For each residue set (i.e., codeword) of
Table I, the conversion to binary starts at the most right
residue followed by the residue to the left. For example,
for the original codeword part C the conversion starts first
at x3, then x2 and finally x1. This is exactly the reverse
order of the operation performed with the decoder of ECC-
based architecture.
In order to provide more insight into the modified

decoding procedure, an example of encoding and decoding
for 16-bit input data is given. The multiplicative inverses
g(i−u)i(new) are given in Table III and the operation
legitimate range is LR=216−1=65535.

Encoding:
• Assume an input data X=65535.
• The D3R original codeword part C will be:

C={|65535|255, |65535|511, |65535|512}={0, 127, 511}

• Then, C is duplicated to C ′ and both parts are com-
bined to produce D3R={0, 127, 511, 0, 127, 511}; the
D3R codeword is stored in the memory cell array.

Decoding:
• Assume that faults induce clustered errors that corrupt

all three residues of C ′ during storage resulting into
D3R={0, 127, 511,3,255,31}. When reading, both
C and C′ are retrieved for decoding.
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• Decoding starts by converting both D3R codeword
parts simultaneously. This process has two steps:
– Calculate the mixed-radix digits vi and v′i

For C, the vi values are:
v1(new) = x3 = 511

v2(new) =
∣

∣(x2 − v1(new))× g12(new)

∣

∣

m2(new)

=
∣

∣(127− 511)× 1
∣

∣

511
= 127

v3(new) =
∣

∣

(

(x1 − v1(new))× g13(new) − v2(new)

)

× g23(new)

∣

∣

m3(new)

=
∣

∣

(

(0− 511)× 128− 127
)

× 1
∣

∣

255
= 0

For C ′, the v′i values are:
v′1(new) = x′

3 = 31

v′2(new) =
∣

∣(x′

2 − v′1(new))× g12(new)

∣

∣

m2(new)

=
∣

∣(255− 31)× 1
∣

∣

511
= 224

v′3(new) =
∣

∣

(

(x′

1 − v′1(new))× g13(new) − v′2(new)

)

× g23(new)

∣

∣

m3(new)

=
∣

∣

(

(3− 31)× 128− 224
)

× 1
∣

∣

255
= 17

– Calculate the corresponding binary data B and B′

For C, the B value is:
B = v1(new) + (v2(new) ×m1(new))

+ (v3(new) ×m1(new) ×m2(new))

= 511+ (127× 512)+ (0× 512× 511) = 65535

For C ′, the B′ value is:
B′ = v′1(new) + (v′2(new) ×m1(new))

+ (v′3(new) ×m1(new) ×m2(new))

= 31 + (224× 512) + (17× 512× 511)
= 4562463

• Compare both B and B′ to the legitimate range
– B=LR, while B′>LR

• Read out B=65535 and break (no correction is re-
quired).

C. Fault-tolerant decoding circuit
The C-gates are used to replace the multiplexer in the

ECC-based architecture, as shown in Figure 7(a) and (b).
The inputs of the C-gates are connected to the outputs of
the two detectors. The reason for using C-gates instead of
the multiplexer is that these asynchronous logic gates are
able to mask short-period glitches (due to intermittent and
transient faults) produced by the detectors. In practice, the
probability of two glitches occuring simultaneously at two
pins carrying the same signal is very low. For example, the
probability that glitches occur simultaneously at one output
of a 64-bit Detector and one output of a 64-bit Detector’
is ( 1

64 )
2=2.44×10−4. This is where C-gates show their

superiority because even if there are many short-period

glitches, as long as they occur at different times and/or
at different pins, the output data is still unchanged.

V. EVALUATION OF ECC-BASED ARCHITECTURE

This section presents the experimental evaluation and
analysis of the proposed ECC-based architecture. A com-
parison to existing ECCs is carried out. Three attributes
are compared among the ECCs: fault tolerance capability,
codeword size and decoding time performance.

A. Simulation setup
The simulation model consists of 4K×64-bit memory

system. All parts of the memory (i.e., encoder, decoder,
memory cell array, fault injection, etc.) were built using
MATLAB script. The intention of the-to-be-evaluated D3R
architecture is to recover the read data when faulty as long
as three residues from the six stored in the memory cell
array are fault-free. For comparison with the existing work,
three symbol-based ECCs are considered:
• C-RRNS [24] – This ECC always consists of three

residues representing the dataword. For the correction
capability of these three residues, C-RRNS has to make
use of six residues representing the checkword. There-
fore, the moduli set of {2p−1, 2p, 2p+1, a1, a2, ..., a6}
will be used; where p is the minimum integer satisfying
the RRNS requirements and ai is a prime number larger
than 2p+1 [24]. The first three moduli are used to encode
the dataword and the last six moduli to encode the
checkword. For the experiment, the p values are p=6, 11,
and 22 for 16, 32, and 64-bit memory word, respectively.

• RS [27] – This ECC consists of two symbols representing
the dataword. For the correction of these two symbols,
RS has to make use of four symbols representing the
checkword. Galois Field of degree q denoted as GF(2q) is
used where each symbol consists of a q-bit data satisfying
RS requirement [27]. For the experiment, the q values are
q=8, 16, and 32 for 16, 32, and 64-bit memory word,
respectively.

• 6M-RRNS [16] – This ECC consists of two residues
representing the dataword. For the correction capability
of these two residues, 6M-RRNS has to make use of four
residues representing the checkword. Therefore, the mod-
uli set of {2p, 2p+1, 2p−1–1, 2p−2–1, 2p−3–1, 2p−4+1}
will be used; where p is the minimum integer satisfying
two of three RRNS requirements [16]. The first two
moduli are used to encode the dataword and the last four
moduli to encode the checkword. For the experiment,
the p values are p=8, 16, and 32 for 16, 32, and 64-bit
memory word, respectively.
Faults were randomly injected into the memory cell array

with fault rates ranging from 1% to 10%. The faults flip a
number of adjacent bits (representing the clustered errors)
that form the codewords of the considered ECCs.

B. Fault tolerance capability and codeword size
Figure 8 shows the capability of the considered ECCs

to tolerate faults that induce clustered and random errors
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in the memory cell array. This capability is represented
by the percentage of corrected memory words. Regardless
of the fault rates, C-RRNS provides the best correction
capability among the considered ECCs followed by D3R,
6M-RRNS and RS. However, the difference between C-
RRNS and D3R capability is negligible, e.g., it is only 0.2%
at 10% fault rate. The difference becomes even smaller for
memories with larger words [16]. Next, the capability of
each ECC will be elaborated.

D3R code ensures the correction of up to three erroneous
residues if faults do not affect a residue and its duplicate
at the same time; i.e., if at least one of the codeword
shown in Table I is not affected, then the data can be
recovered. C-RRNS code always ensures the correction of
up to three erroneous residues regardless of the erroneous
residue combination. However, the bit size of its varied-size
residues is longer than those of the other three ECCs. RS
code always ensures the correction of up to two erroneous
symbols regardless of the erroneous symbol combination.
Nevertheless, the bit size of its fixed-size symbols is shorter
than those of the other three ECCs. 6M-RRNS code always
ensures the correction of up to two erroneous residues
regardless of the erroneous residue combination [16]. Note
that in general, D3R can recover up to t+1=n−k

2 +1
residues, while C-RRNS, RS and 6M-RRNS each can only

correct up to n−k
2 residues.

One can conclude that D3R provides a comparable
correction capability as C-RRNS, and at a lower overall
codeword size; this will result in a smaller area overhead.
Figure 9 depicts the codeword size of the considered ECCs
normalized to D3R. It clearly shows that for memory
word size lower than 256 bits, the D3R codeword size is
smaller than that of C-RRNS; e.g., for a 64-bit memory, the
difference is about 6%. For very large memory word size
(>512-bit), the difference in the codeword size becomes
negligible.

C. Decoding performance

All the considered ECCs require an iterative correction
process during decoding. D3R code ensures the correction
of three residues by performing up to C3

1=
3!

1!(3−1)!=3
iterations. Note that although D3R has six residues, the
correction process executes in parallel. C-RRNS code
ensures the correction of three residues by perform-
ing up to C9

3=
9!

3!(9−3)!=84 iterations [24]. RS code en-
sures the correction of two symbols by performing up
to C6

2=
6!

2!(6−2)!=15 iterations [27]. 6M-RRNS ensures
the correction of three residues by performing up to
C6

2=
6!

2!(6−2)!=15 iterations and an additional likelihood
decoding step [16]. Note that in general, D3R requires
a maximum of Cn

t

2
iterations, C-RRNS and RS require

a maximum of Cn
t iterations, and 6M-RRNS requires a

maximum of Cn
t +1 iterations. Therefore, the decoding

performance of D3R is much better than those of the
other three ECCs; i.e., it is 84

3 =28× faster than C-RRNS,
and 5× faster than RS and 6M-RRNS. Furthermore, these
differences increase for higher error correction capability.

VI. EVALUATION OF IMPROVED-BASED ARCHITECTURE

This section gives the evaluation of the Improved-based
architecture and compares it first to the ECC-based archi-
tecture; thereafter, to the related work.

As mentioned before, the ECC-based architecture is
based on the conventional MRC algorithm and the decod-
ing parameters given in Table II; see also Figure 5 for
the circuit. In contrast, the Improved-based architecture is
based on the modified MRC algorithm and the decoding
parameters presented in Table III; see also Figure 7 for
the circuit. The implementation of the decoders of both
architectures was done using VHDL on Xilinx ISE and
Synopsys Design Compiler tools based on 90nm CMOS
technology.

The reliability evaluation was carried out using Matlab
simulation. Besides injecting faults into the memory cell ar-
ray as mentioned in Section V, the faults were also injected
to the decoders with the ratio of 1:10 (decoder:memory cell
array). This ratio is set based on the soft error rates between
SRAM bit and logic for 90nm CMOS technology reported
in [21].
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A. Comparison to ECC-based architecture
For comparison to the ECC-based architecture, three at-

tributes are considered: area overhead, performance penalty
and memory system reliability. Figure 10 illustrates the
area overhead and performance penalty of the Improved-
based decoder normalized to the ECC-based decoder. It
clearly shows that the required area overhead is smaller
and the reduction becomes significant for larger memory
words. For example, for a word size of 128 bits, the
Improved-based decoder consumes 25% less area than that
of the ECC-based decoder. The figure also indicates that for
smaller word size (≤64 bits), the Improved-based decoder
is slightly slower (≤5%) than the ECC-based decoder. For
larger word size, the performance is anticipated to be better
than the ECC-based decoder.

Figure 11 shows the simulation results of memory system
reliability for the two proposed architectures for a 64-bit
memory word. Clearly, the Improved-based decoder pro-
vides better system reliability than the ECC-based decoder
irrespective of the fault rate. The difference becomes larger
at higher fault rate, e.g., 10× greater at 10% fault rate
as compared to 1% fault rate. Thus, the Improved-based

Table IV
Comparison of the ECCs Proposed in [15] and in This Article

EG-LDPC [15] D3R Differences (D3R/EG-LDPC)
(n, k, t) (n, k, t) Fault tolerance Required

capability codeword size

63,37,4 100,32,50 50
100 / 4

63=8.3 100/63=1.59
255,175,8 388,128,194 194

388 / 8
255=16.7 388/255=1.52

decoder is able to improve the memory system reliability
especially at higher fault rates.

B. Comparison to related work
As mentioned in Section I, no published work has

addressed the same problem for hybrid memories as con-
sidered in this article except [15]. However, the error
correction scheme used in [15] targets only random errors
using Euclidean Geometry Low-Density Parity-Check (EG-
LDPC) code. Contrarily, the ECC proposed in this work
targets both random and clustered errors using Double
Three-Residue (D3R). Despite these differences, the results
from [15] will be used to compare the following attributes:
error correction capability and area overhead of the memory
cell array.

Table IV summarizes the parameters used to develop both
EG-LDPC and D3R codes. The parameters n, k, t denote
the codeword size, the dataword (memory word) size and
the error correction capability, respectively. Note that the
memory size for D3R is chosen to be the nearest to the
one reported in [15] for fair comparison.

The third column of Table IV gives the ratio of the
corrected bits of the two ECCs. For example, for 32-bit
memory, D3R can correct up to 50% of bits that form its
six-residue codeword, while EC-LDPC can correct only 6%
[15]; this results in an improved ratio of a factor of 8.3.
The improvement becomes even more significant for larger
memory words.

The fourth column of Table IV presents the ratio of the
codeword size of D3R and EG-LDPC; it clearly shows that
the improvement in terms of error correction capability of
D3R comes at the cost of 50% larger codeword size as
compared to EG-LDPC.

VII. CONCLUSION

This article presented a high-performance, fault-tolerant
architecture for reliability improvement of hybrid memory
system. The architecture addresses faults that induce ran-
dom and clustered errors in the memory cell array and
the decoder. The fault-tolerant architecture combines two
techniques: (i) an error correction scheme that tolerates
both clustered and random faults in memory cell array,
and (ii) an on-line masking based on asynchronous logic
gates to tolerate faults in the decoder. In addition, the area
and performance of the decoding circuit is optimized by
reversing the decoding process.

Experimental evaluation shows that the proposed archi-
tecture provides 5× faster decoding performance, a com-
parable memory cell array area overhead and competitive
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reliability as compared to the existing symbol-based ECCs
such as Reed-Solomon and Redundant Residue Number
System codes. It is worth mentioning that faults in the en-
coder are not considered in this work. Investigation on new
fault tolerance schemes to combine with the architecture
could be performed in the future. In summary, the proposed
architecture offers an attractive solution for achieving a fast,
reliable hybrid nanoelectronic memory.
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