INVESTIGATION OF MICROSTRIP PARALLEL COUPLED BANDPASS FILTER FOR GPS APPLICATIONS

DZUL FITRY BIN ISMAIL

This report is submitted in partial fulfillment of requirements for the award of Bachelor Degree of Electronic Engineering (Telecommunication Electronic Engineering) with honours

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka

MEI 2007
MENGKAJI PENAPIS LULUS JALUR GANDINGAN SELARI UNTUK APLIKASI GPS

DZUL FITRY BIN ISMAIL

Laporan ini dikemukakan untuk memenuhi sebahagian daripada syarat penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektronik (Elektronik Telekomunikasi) dengan kepujian

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka

MEI 2007
INVESTIGATION OF MICROSTRIP PARALLEL COUPLED BANDPASS FILTER FOR GPS APPLICATION

Sesi Pengajian : SESI 2006/2007

Saya DZUL FITRY BIN ISMAIL (HURUF BESAR) mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (✓) :

☐ SULIT* (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

✓ TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) [Signature]

(COP DAN TANDATANGAN PENYELEDA) [Signature]

Alamat Tetap: NO. 2276, JALAN 3/5 BANDAR BARU SUNGAI BULOH 47000 SUNGAI BULOH, SELANGOR DARUL EHSAN

Tarikh: 15/05/07
"I hereby declare that the material presented in this thesis are the result of my own work except as cited as reference"

Signature:

Author: Dzul Fity Bin Ismail

Date: 11 Mei 2007
“Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya telah saya jelaskan sumbernya.”

Tandatangan :

Nama Penulis : Dzul Fityr Bin Ismail

Tarikh : 11 Mei 2007
"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) with honours."

Signature

Supervisor's Name : Mr. Abd. Shukur Bin Ja'afar

Date : 11 Mei 2007
"Saya akui bahawa saya telah membaca laporan ini dan pada pandangan saya laporan ini adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektronik (Elektronik Telekomunikasi) dengan kepujian."

Tandatangan

Nama Penyelia : En. Abd. Shukur Bin Ja’afar

Tarikh : 11 Mei 2007
To my love, my lovely mum, dad and to all my family and friends
ACKNOWLEDGEMENT

First of all, I would to thanks to ALLAH SWT, for helping and blesses me through all the obstacles that I encountered while doing this project. From blesses from ALLAH SWT, I would not think that I can finish this PSM II project.

I also would to thank to my supervisor, En. Abd. Shukur Bin Ja’afar for his support and guidance while doing this project. His idea and knowledge have helped me a lot in doing this project. He provides a motivation and enthusiastic atmosphere during the discussion we had.

Also appreciation to my family because they encouragement and never ending support. Their support and lovely companionship is another important source of strength for me. To all my friends and classmate, thanks for all of the idea, teach, and wishes. Our hard effort while doing the research is not useless.

Lastly, I would like to acknowledge every individual who give me a helping hand in order to achieve this accomplishment.
ABSTRACT

This thesis provides the reader with a detailed and comprehensive study of theory, design, fabrication, and result in designing bandpass RF microwave filter. The approaches used to achieve this project are through literature survey, dimensional calculation and computer software simulation. These approaches are used to analyze the characteristics and the required specification before fabricating the microstrip bandpass filter, computer simulation is the best technique to get the solution because it is fast and economical. The bandpass filter has several types and design. There are parallel-coupled microstrip bandpass filters, edges microstrip bandpass filter and hairpin microstrip bandpass filter. The filter design is concentrated on the parallel-coupled bandpass microstrip filter operating at 1.575GHz by using FR4 as a substrate. To achieve this purpose, computer software, Microwave Office 2004 is used to analyze the characteristics of the microstrip bandpass filter and to determine its suitable parameters. The Emsight Simulator is developed by using a technique called "Method of Moment (MoM)". Meanwhile, insertion loss measurement is one of the critical measurements that have been used to analyze performance quality.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF TERM</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Project Objective</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Scope of Work</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Project Methodology</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>BACKGROUND STUDY</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Global Positioning System (GPS)</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Microstrip</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Definitions of Microstrip</td>
<td>7</td>
</tr>
</tbody>
</table>
III THEORY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Filter</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Types of Filters</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Passive Filters</td>
<td>20</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Introduction</td>
<td>20</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Types of Passive Filter</td>
<td>21</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Basic Low Pass Filter</td>
<td>24</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Basic High Pass Filter</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Active Filters</td>
<td>27</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Introduction</td>
<td>27</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Classification of Active Filters</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Band Pass Filter</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>Types of Active Filters</td>
<td>33</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Butterworth Filter</td>
<td>34</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Chebyschev Filter</td>
<td>35</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Bessel Filter</td>
<td>36</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Elliptic Filter</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>How to Design Parallel-Coupled Microstrip Bandpass Filter?</td>
<td>38</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Basic Parallel Couple Filter</td>
<td>40</td>
</tr>
</tbody>
</table>
IV DEVELOPMENT OF PROJECT

4.1 Introduction 43
4.2 Parallel Coupled Filter Design 44

V SIMULATION ANALYSIS, RESULT AND ANALYSIS

5.1 Expected Result 51
5.2 Analysis Result 51
5.3 Result 58

CONCLUSION AND SUGGESTION

Conclusion 61
Suggestion 62

REFERENCE 63

APPENDIX A Conductivities for Some Materials 65
APPENDIX B Dielectric Constants and Loss Tangents for Some Materials 66
APPENDIX C Calculation to Determine the Order of the Filter 67
APPENDIX D Simulation by MATLAB to Determine Order of Filter 70
APPENDIX E Simulation by MATLAB to Compute the Value of Element 71
APPENDIX F Simulation by MATLAB to Compute The Even and Odd Characteristic Impedances 74
APPENDIX G Suggestion for Further Improvement 78
LIST OF FIGURES

FIGURES

Fig. 1.1 Flow chart for overall process 5
Fig. 2.1: Microstrip 8
Fig. 2.2: The electromagnetic spectrum 14
Fig. 3.1: (a) T-Network (b) Electrical Circuit 22
Fig. 3.2: Ideal Response of Various Filters (a) Low Pass (b) High Pass (c) Band Pass (d) Band Stop (e) All Pass 22
Fig. 3.3: Basic Low Pass Filter and its Frequency Response (a) Low Pass Filter (b) Frequency Response 24
Fig. 3.4: (a) H.P. Filter Circuit (b) Frequency Response 26
Fig. 3.5: Frequency Response of Major Active Filters (a) Low Pass Filter (b) High Pass Filter (c) Band Pass Filter (d) Band Stop Filter (e) Phase Relation of Input and Output Waveform in an all Pass Filter 30
Fig. 3.6: Frequency Response for Three Types of Low Pass and High Pass Butterworth Filters (a) Low Pass Filter (b) High Pass Filter 31
Fig. 3.7: Frequency Response of a Band Pass Filter 33
Fig. 3.8: Frequency Response of Various Filters 34
Fig. 3.9: Frequency Response Comparison of 4th Order Butterworth, Chebyschev and Ideal Response 35
Fig. 3.10: Group Delay (Filter Characteristics) 36
Fig. 3.11: Attenuation versus normalized frequency for 0.5dB ripple low-pass filter prototype 38
Fig. 3.12 Basic structure of a coupled-line stage
Fig. 3.13 Equivalent circuit for an open-end microstrip line
(a) open-end microstrip line, (b) equivalent capacitance, and
(c) equivalent extra length of microstrip line
Fig. 3.14 Concept of even/odd mode current distribution in the couple
line
Fig. 4.1: Attenuation versus normalized frequency for 0.5 dB ripple
low-pass filter prototype
Fig. 4.2: Low-pass filter prototype
Fig. 4.3: Bandpass filter prototype
Fig. 4.4: Circuit for coupled line parameters
Fig. 4.5: Layout of parallel coupled bandpass filter
Fig. 4.6: Close up view of MLin 1
Fig. 4.7 General layout of parallel-coupled microstrip bandpass
filter
Fig. 5.1 a) Measurement setup b) Microstrip parallel-coupled
bandpass filters
Fig. 5.2 a) Reflection coefficient, S_{11} b) Transmission, S_{21}

GRAPHS

Graph 5.1: a) Filter response before and b) Filter response after adjust
coupled line space
Graph 5.2: a) The result before and b) The result after changing the
coupled line length
Graph 5.3: a) The result before and b) The result after changing
coupled line width
Graph 5.4: a) The result before and b) The result after changing
coupled line space
LIST OF TABLES

TABLES

Table 3.1: Summary of Filter Response Characteristics 37
Table 4.1: Bandpass Filter Design Specification 44
Table 4.2: FR4 Substrate’s Properties 44
Table 4.3: Parameter of Parallel-Coupled Filter 48
Table 4.4: Physical dimension of coupled line 48
Table 5.1: Bandpass Filter Design Specification 52
Table 5.2: FR4 Substrate’s Properties 52
Table 5.3: Comparison of calculated, simulation and measured results 60
LIST OF TERM

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Worsening</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>f_0</td>
<td>Center Frequency</td>
</tr>
<tr>
<td>f_l</td>
<td>Lower Cut-off Frequency</td>
</tr>
<tr>
<td>f_H</td>
<td>Higher Cut-off Frequency</td>
</tr>
<tr>
<td>Z_{in}</td>
<td>Input Impedance</td>
</tr>
<tr>
<td>Z_0</td>
<td>Characteristics Impedance</td>
</tr>
<tr>
<td>R_{in}</td>
<td>Input Resistance</td>
</tr>
<tr>
<td>R_0</td>
<td>Characteristic Resistance</td>
</tr>
<tr>
<td>ε_r</td>
<td>Relative Dielectric Constants</td>
</tr>
<tr>
<td>ε_{eff}</td>
<td>Dielectric</td>
</tr>
<tr>
<td>ε_0</td>
<td>Wavelength</td>
</tr>
<tr>
<td>h</td>
<td>Substrate Height</td>
</tr>
<tr>
<td>t</td>
<td>Thickness</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>w</td>
<td>Width</td>
</tr>
<tr>
<td>s</td>
<td>Space</td>
</tr>
<tr>
<td>Gaps</td>
<td>Internal Between</td>
</tr>
<tr>
<td>Lumped</td>
<td>Lumped of Earth</td>
</tr>
<tr>
<td>Stub</td>
<td>A Stump</td>
</tr>
<tr>
<td>PCB</td>
<td>Printer Board Circuit</td>
</tr>
</tbody>
</table>
Chapter I

INTRODUCTION

1.1 Introduction

This project provides the reader with the detail and comprehensive study of theory, design, fabrication, result and problem encountered in the designing bandpass RF microwave filter. The approaches used to achieve this project are through literature survey, dimensional calculation and computer software simulation. It also approaches used to analyze the characteristic and the required specification before fabricating the microstrip bandpass filter.

This research is all about parallel-coupled microstrip bandpass filter that operates at 1.575GHz. Their parameters that have been used such as height, h are 1.6mm while their tan δ is 0.019. The best technique to get the better solution by is using computer simulation because it is fast and economical. According to the parameters, several equations is used to find the other parameter such as order of filter, value of elements, odd and even characteristic impedance and physical dimension of coupled line.

All the equation is convert into Matlab 6.5.1 command to make sure all the calculation is accurate. In this project, Microwave Office 2004 have been choose as
the software that can be used to get the solution of the characteristics of the microstrip bandpass filter and to determine its suitable parameters.

This project will be fabricate after all the parameters and the simulation result shows that their return loss, S_{11} and insertion loss, S_{21} is reach at the target value. The return loss must reach at 0dB, while insertion loss at -10dB or below than that. Lastly, the parallel-coupled microstrip bandpass filter will be measure by using Network Analyzer to measure their return loss and their insertion loss. If the measured result shows the values that occur are equal to the simulation or greater than simulation, it shows this project is reaching their goal.

1.2 Problem Statement

Meanwhile, this research is made to avoid the problem about the GPS system before this. The problem is including:

i. It is well known that like any other radio signal, GPS is most easily disrupted at the receiver RF front-end whereas the signal modulation itself may be resistant to any impact.

ii. Such sources can cause outages to GPS receivers due to poor filtering.

To avoid this problem, the microstrip of bandpass filters, when compared against the other available techniques offer a great deal of promise in mitigating these sources effects on GPS reception.
1.3 Project Objective

The technology of filter in microwave is widely used and become one of the important technologies in the new era. The research of microstrip bandpass filter for GPS applications is one of the ways to upgrade the GPS system.

The objective for this research is:-

i. To design the microwave parallel-coupled bandpass filter by using microstrip transmission line.

ii. To optimize the bandpass filter response by changing important parameters such as length, space and width of each resonator.

1.4 Scope of Work

Investigation of Microstrip bandpass filter for GPS applications means that, this research is focus for GPS that operate at frequency 1.575GHz. There are six parts scope of work:-

i. Study about microstrip filter, microstrip transmission line and electromagnetic waveform. In this part, it need to calculate the dimensions value of filter, characteristic of dielectric, characteristic of impedance and frequency reception to make sure the filter design is perfect and success.

ii. Develop the equations that related with the research to calculate the dimensions of microstrip filter, characteristic of impedance, the relative permeability of dielectric material and one of the microstrip filter layout.
iii. By using the software such as 'Microwave Office 2004' and MATLAB, the expected result for the filter can be earned. Simulation process is one of the engineering methods to get the expected result without using any material that costly.

iv. When obtain an applicable circuit from the simulation, fabricate can be started.

v. Test the fabricate filter circuit after the whole process is done.

vi. Compare the result with the expected result in simulation.

1.5 Project Methodology

At the first, start planning the project with the literature review for the related journal, books and all information from internet, magazine and each other. With the all information, develop an equation to get the expected result by simulation. Try to run the simulation to look their expected result before fabricate the filter circuit. If not, back to simulation once again.

If the expected result shows the accurate value that we want, fabricate the filter and then test it. Then measure and calculate the result to compare with the simulation result. If the fabricate result shows the perfect result it seem the project is successfully done. If not, back to fabricate and then test it again until we get the accurate result. Lastly, at the end of the research the whole process of the project will be written into thesis. Flow chart below is shown the overall process.
Fig. 1.1: Flow chart for overall process
Chapter II

BACKGROUND STUDY

2.1 Global Positioning System (GPS)

The Global Positioning System (GPS) is a worldwide radio-navigation system formed from a constellation of 24 satellites and their ground stations [5]. GPS uses these as reference points to calculate positions accurate to a matter of meters.

In fact, with advanced forms of GPS it can make measurements to better than a centimeter. In a sense it's like giving every square meter on the planet a unique address. GPS receivers have been miniaturized to just a few integrated circuits and so are becoming very economical. And that makes the technology accessible to virtually everyone.

These days GPS is finding its way into cars, boats, planes, construction equipment, movie making gear, farm machinery, even laptop computers. Soon GPS will become almost as basic as the telephone.