DESIGN AND DEVELOPMENT A GADGET OF MULTI EFFECT
FOR MUSICAL INSTRUMENT

MOHAMAD FIRDZAUSSYAH BIN YUSUF

This Report Is Submitted In Partial Fulfillment of Requirements for the Bachelor Degree Of Electronic Engineering (Industrial Electronic)

Faculty of Electronics and Computer Engineering
Universiti Teknikal Malaysia Melaka

MAY 2007
Saya MOHAMAD FIRDZAUS SYAH BIN YUSUF mengaku membentuk Laporan Projek Sarjana Muda ini di usir di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:
1. Laporan adalah hak milik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuka salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (√):
 - SULIT*
 - TERHAD*
 - TIDAK TERHAD

(Mengandungi maklumat yang berdasarkan keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dilakukan)

Disahkan oleh:

(TANDATANGAN PENULIS)

Alamat Tetap:

(SALAPAK IT UNDOP)

9508, SRI AMAN

SARAWAK

Tanah: 11/05/2007

© Universiti Teknikal Malaysia Melaka
"I, hereby declare that this thesis entitled, design and development a gadget of multi effect for musical instrument is a result of my own research idea except for works that have been cited clearly in the references."

Signature : [Signature]
Name : MOHAMAD FIRDZAUS SYAH BIN YUSUF
Date : 11th MAY 2007
"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) with honors."

Signature: [Signature]
Supervisor's Name: PN. MAISARAH BT. ABU
Date: 1/5/07
ACKNOWLEDGEMENT

I would like to extend my sincere gratitude to my supervisor, Pn. Maisarah bt. Abu for her assistance and guidance towards the progress of this thesis project. Throughout the year, Pn. Maisarah has been patiently monitoring my progress and guided me in the right direction and offering encouragement. Obviously the progress I had now will be uncertain without her assistance. Special thanks must also to all the lecturer of Faculty of Electronics and Computer Engineering for his/her advice and help on the software/hardware development.
ABSTRACT

Every guitarist has an intuitive sense as to where basic effects should go in their signal chain. If they have two pedals, a distortion unit and a digital delay, it would naturally put the distortion before the delay and the guitar goes into the distortion, the distortion into the delay, and the delay into the amp. But the more pedals you use, the trickier it gets. The purpose of this multi-effect is to provide a convenient way for a musician to instantaneously change the sound of his instrument without a stoppage in play according to the stored sound set before the play. The unit rests on the floor and the effect can be activated or bypassed via a ‘footswitch’, a durable switch the user steps on to activate. Overall, through all the design of this multi-effect, the main key of manipulates the electronic study is to create an effect gadget that will boost up the quality in type of sound produced and convenient to the guitarist.
ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER ITEM</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT TITLE</td>
<td>i</td>
</tr>
<tr>
<td>SUPERVISOR APPROVAL</td>
<td>iii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
</tr>
<tr>
<td>CONTENT</td>
<td>ix</td>
</tr>
<tr>
<td>LIST FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>xv</td>
</tr>
</tbody>
</table>

I INTRODUCTION

1.1 Introduction

1.1.1 Introduction of the project 1

1.1.2 Kinds of effect

1.1.2.1 Amplitude based effect 3

1.1.2.2 Wave distortion effect 4

1.1.2.3 Filter/frequency response effect 4

1.1.2.4 Time delay effect 5

1.1.2.5 Other Miscellaneous Effects 5
II LITERATURE REVIEW

2.1 Guitar Effect History 11
2.2 Guitar Effect Building Instruction 14
2.3 Guitar Effect Building Technique 15
2.4 Guitar Effect Pedal Information 16
2.5 Distortion Effect 17
 2.5.1 Physical approaches to creating distortion 17
 2.5.2 Clipping in signal processing 17
2.6 Multi-Effect (BOSS) 18
2.7 Audio Signal Processing 18
 2.7.1 Equalization 19
 2.7.2 Audio filter 20
 2.7.4 Noise Reduction 21
 2.7.5 Audio noise reduction 21

III PROJECT METHODOLOGY

3.1 Overview 23
3.2 Design Circuit 25
 3.2.1 Op-amps 25
 3.2.2 High and Low pass filters 27
 3.2.3 Power Supply 28
 3.2.3.1 Bipolar supplies 29
 3.2.3.2 Biasing 29
3.2.4 Knobs and Controls 30
3.2.5 Clipping Diodes 31
3.3 Testing Circuit 33
3.4 Choosing the Right Components 35
 3.4.1 Overdriving transistors 36
 3.4.2 "Hard" diode clipping 36
 3.4.3 "Soft" diode clipping 36
 3.4.4 Special methods 36
 3.4.5 Op-amps 37
 3.4.6 Choosing the op-amp 37
3.5 PCB Design 37
3.6 PCB Fabrication 39
 3.6.1 Choosing a Suitable Board 40
 3.6.2 Print Design to PCB Board 41
 3.6.2.1 Print Design at the Transparency 41
 3.6.2.2 Exposing the Board 42
 3.6.3 Etching Process 44
3.7 Drilling 47
3.8 Soldering Process 48
3.9 Casing 50

IV RESULT AND DISCUSSION

4.1 Introduction 51
4.2 Simulation 52
 4.2.1 Simulation for Distortion Effect Circuit 52
 4.2.2 Simulation for the EQ/Tone Control circuit Using Multisim 54
4.2.3 Simulation for the EQ/Tone Control circuit with Variable active filter (Low, Mid, High) using PSpice 55
4.2.4 Simulation result for 3-Band active filter Circuit 56

4.3 Testing the Waveform and Function ability 58
4.3.1 Distortion Effect 58
4.3.1.1 Distortion Waveform 59
4.3.2 Ring Modulator Effect 62
4.3.2.1 Ring Modulator waveform 63
4.3.3 Tremolo Effect 65
4.3.3.1 Tremolo Waveform 65

V CONCLUSION AND FUTURE PLAN

5.1 Conclusion 68
5.2 Future Plan 69

REFERENCES 70

APPENDIXES 72
<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Usage of Multi-effect Gadget</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Examples of Guitar Effect</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Multi-effect by Using DPDT Switches</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Guitar Effect Pioneer</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of the whole Project</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Non-inverting Op-Amp</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Inverting Op-Amp</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>High and Low pass filter</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Basic distortion circuits</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Bipolar power supplies</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>Biasing</td>
<td>29</td>
</tr>
<tr>
<td>3.8</td>
<td>Drive control circuits</td>
<td>30</td>
</tr>
<tr>
<td>3.9</td>
<td>Volume control circuit</td>
<td>30</td>
</tr>
<tr>
<td>3.10</td>
<td>Tone control circuits</td>
<td>31</td>
</tr>
<tr>
<td>3.11</td>
<td>Hard and soft clipping</td>
<td>32</td>
</tr>
<tr>
<td>3.12</td>
<td>Original, Hard and Soft clipping generated waveform</td>
<td>32</td>
</tr>
<tr>
<td>3.13</td>
<td>Special clipping diode</td>
<td>33</td>
</tr>
<tr>
<td>3.14</td>
<td>Construct Circuit at the Breadboard</td>
<td>34</td>
</tr>
<tr>
<td>3.15</td>
<td>Breadboard Test</td>
<td>34</td>
</tr>
<tr>
<td>3.16</td>
<td>Breadboard Test by Using Oscilloscope</td>
<td>35</td>
</tr>
<tr>
<td>3.17</td>
<td>Distortion circuit</td>
<td>38</td>
</tr>
<tr>
<td>3.18</td>
<td>Ring modulator circuit</td>
<td>38</td>
</tr>
<tr>
<td>3.19</td>
<td>Flowchart of PCB Fabrication</td>
<td>39</td>
</tr>
<tr>
<td>3.20</td>
<td>Single-sided PCB Printed Board</td>
<td>40</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.21</td>
<td>Printed Circuit Design</td>
<td>41</td>
</tr>
<tr>
<td>3.22</td>
<td>Tape the Design onto PCB Printed Board</td>
<td>42</td>
</tr>
<tr>
<td>3.23</td>
<td>PCB Lettering Board</td>
<td>43</td>
</tr>
<tr>
<td>3.24</td>
<td>Etching Process</td>
<td>45</td>
</tr>
<tr>
<td>3.25</td>
<td>After Etching Process (Rinse with Cold Water)</td>
<td>45</td>
</tr>
<tr>
<td>3.26</td>
<td>Drill Pits</td>
<td>46</td>
</tr>
<tr>
<td>3.27</td>
<td>Drilling Process</td>
<td>47</td>
</tr>
<tr>
<td>3.28</td>
<td>After Soldering Process (Distortion Circuit)</td>
<td>48</td>
</tr>
<tr>
<td>3.29</td>
<td>Finished Distortion Circuit</td>
<td>49</td>
</tr>
<tr>
<td>3.30</td>
<td>Casing for multi-effect</td>
<td>50</td>
</tr>
<tr>
<td>3.31</td>
<td>Casing for multi-effect with knobs, switches and jack input/output</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Distortion circuit constructed using Multisim</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Output waveform for distortion circuit</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>EQ/Tone control circuit</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Frequency of selected input</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Simulation using PSpice for EQ/Tone control circuit</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Low frequency Boost and Cut</td>
<td>56</td>
</tr>
<tr>
<td>4.7</td>
<td>Result for midrange frequency cut</td>
<td>56</td>
</tr>
<tr>
<td>4.8</td>
<td>Result for high frequency cut</td>
<td>57</td>
</tr>
<tr>
<td>4.9</td>
<td>Distortion circuit</td>
<td>58</td>
</tr>
<tr>
<td>4.10</td>
<td>Input waveform</td>
<td>59</td>
</tr>
<tr>
<td>4.11</td>
<td>Output Waveform with minimal distortion</td>
<td>59</td>
</tr>
<tr>
<td>4.12</td>
<td>Output waveform with maximum distortion</td>
<td>60</td>
</tr>
<tr>
<td>4.13</td>
<td>Ring Modulator circuit</td>
<td>62</td>
</tr>
<tr>
<td>4.14</td>
<td>Output waveform in OFF condition</td>
<td>63</td>
</tr>
<tr>
<td>4.15</td>
<td>Output Waveform in ON condition</td>
<td>63</td>
</tr>
<tr>
<td>4.16</td>
<td>Tremolo circuit</td>
<td>65</td>
</tr>
<tr>
<td>4.17</td>
<td>Output Waveform in OFF condition</td>
<td>65</td>
</tr>
<tr>
<td>4.18</td>
<td>Output Waveform in ON condition</td>
<td>66</td>
</tr>
<tr>
<td>4.19</td>
<td>Final Product (Multi-effect gadget)</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

EQ – Equalizer
IC – Integrated circuit
DPDT - Double Pole Double Throw
PCB – Printed Circuit Board
CD – Compact Disc
DSP – Digital Signal Processing
LED – Light Emitting Diode

LIST OF APPENDIX

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>COMPONENT DATASHEET</td>
<td>71</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Introduction of the Project

The use of electronics to manipulate signals produced by electrical stringed instruments is presently becoming more and more popular among musicians. ‘Effects’ as they are called in the music industry, alter audio signals in different ways and can come in various shapes and sizes from simple stomp boxes to intricate digital processors. In this project, the used of electronic study to manipulate the signal waveform form musical instrument (guitar) in to several type of effect sound that come out from guitar amplifier is the main reference how this project will progress. Guitar effects are electronic devices that modify the tone, pitch, or sound of an electric guitar. Effects can be housed in effects pedals, guitar amplifiers, guitar amplifier simulation software, and rack mount preamplifiers or processors. Electronic effects and signal processing form an important part of the electric guitar tone used in many genres, such as rock, pop, blues, and metal. Guitar effects are also used with other instruments in rock, pop, blues, and metal, such as electronic keyboards or electric bass.
For more details on how a multi-effect connection between guitar and amplifier, Figure 1.1 shows how this multi-effect will connect between guitar and amplifier as a signal processor for guitar sound before it goes into amplifier as an output.

![Figure 1.1: The Usage of Multi-effect Gadget](image)

Anything that can affect the sound of a guitar can be considered a guitar effect. Most effects start with the volume and tone controls of your guitar. There are many guitars that now feature active EQ, split coil switches, phase switches, and even MIDI output. The types of pickups and electronics used also very much effect the sound of your guitar.
1.1.1 Kinds of Effects

Effects are usually based on some facet of the human ear’s abilities to figure out from amplitude and frequency content variations what a sound source is doing. This was critical when the sound source might be a saber toothed tiger. Now it is a means to express ourselves musically by directly invoking emotion. Where are the examples of effect that used to produce difference sound in guitar.

1.1.1.1 Amplitude Based Effects

These types of effect operate based on the instantaneous loudness of the signal, how it changes, and how quickly it changes. There are:

i. Volume control
ii. Tremolo
iii. Auto tremolo
iv. Panning/ping-pong
v. Gating/repeat percussion
vi. Compression
vii. Expansion
viii. Asymmetric comparator / peak comparator
ix. Noise gating
x. Attack delay
xi. Limiting
xii. Auto swell
1.1.1.2 Waveform Distortion Effects

Generating the distortion type of effect basically base on manipulating the clean signal (sine wave) that produced by guitar by employing this kind of electronic principle such as:

i. Symmetrical clipping
ii. Asymmetrical clipping
iii. Infinite limiting
iv. Half wave rectification
v. Full wave rectification
vi. Arbitrary waveform generation

1.1.1.3 Filter/Frequency Response Effects

The function of this type of effect is to control the frequency and reduce noise that come from the other unwanted sound that had been produced. These types of effect are:

i. EQ/tone controls
ii. Treble/mid/bass boost
iii. Cabinet simulation
iv. Resonator
v. Wah
vi. Auto wah
vii. Tremolo-wah
viii. "vibrato"
ix. Phase shifting
1.1.1.4 Time Delay Effects

A variety of time delay effects are implemented using variable-length delay lines principle which will produced this kind of effect such as:

i. Reverb
ii. Echo
iii. True vibrato
iv. Flanging
v. Chorus
vi. Slap back echo
vii. Reverse echo/reverb
viii. Sampling

1.1.1.5 Other Miscellaneous Effects

Beside of those effect that uses the electronic principle, other miscellaneous effects also can be generate by manipulating several audio principle study which basically can be observe by manipulating audio component and applying audio technique that will produced effect such as:

i. Octave division (octave down)
ii. Harmony generation
iii. Phase lock tracking
iv. Noise addition
v. Talk box
vi. Voice tracking (vocoder)
vii. Ring modulation
Figure 1.2: Examples of Guitar Effect

Figure 1.2 shows several effects that have been produced using basic electronic and audio principles, which have become popular among nowadays musicians and also have helped many musicians to overpower their creativity on musical performance and music composition. These guitar effects come separately, which have various functions and produce different types of guitar signals.
1.2 Project Objectives

The purpose of this multi-effect is to provide a convenient way for a musician to instantaneously change the sound of his instrument without a stoppage in play according to the stored sound set before the play. The unit rests on the floor and the effect can be activated or bypassed via a ‘footswitch’, a durable switch the user steps on to activate. A typical effect has the following features: ¼” input/output plugs, a switch to enable or bypass the effect, and various control knobs. Most effect is either powered by a single 9V battery or an optional AC adapter. So in this project, to design the multi-effect some of this requirement will be notice as a reference. Overall, through all the design of this multi-effect, the main key of manipulates the electronic study is to create an effect gadget that will boost up the quality in type of sound produced.

i. To design each type of effect including distortion effect, ring modulator effect, tremolo effect and EQ/Tone control circuit which to be develop into a multi-effect circuit.

ii. To develop and combines those effect types based on electronic theory related to audio signal processing into a gadget of guitar multi-effect.

iii. So, in this project, along with to design the multi-effect, the noise reduction method will be implemented so the noise that comes out from guitar can be control close into it original range. Noise reduction is the process of removing noise from a signal.
1.3 Scope of Project

In designing and developing this project, the type of signal processing such as amplitude based effect; waveform distortion effect, filter/frequency response effect and time delay effect are to be use as major reference in expecting the result. Working with these signal processing method will be tested firstly by do a simulation on each method and relate it with basic theory of electronic principle also the audio engineering principle which closely bring audio and electronic together in producing expected resulting in varieties of sound by stringed instrument. Some basic circuit that commonly use in audio signal processing are:

1. **Full Wave Rectifier, Common Source MOSFET and JFET, Symmetrical/Asymmetrical Clipping** - generates distortion and overdrive type of effect in basic guitar effect. Commonly an OP amp use by emulating ideal diode produces a full wave signal.

2. **Time Delay** - adjusting time by delaying signal waveform normally in range of maximum 5000ms duration. Some types of effect are reverb, flanger, chorus and vibrato.

3. **Signal/Amplitude Modulation** - tremolo, noise gating and volume control for each type of effect produce in this gadget.

4. **Filter/Frequency Response** - generates equalization and control (Low, Mid, High), phase shifting, resonator and wah type of effect.
Designing the switching system which functionally enable guitarist manually switch form one effect to another effect during live performance. In designing this interference it uses:

1. **Double Pole Double Throw switches** use as gadget footswitch. Also act as __________ switch to turn on the selected effect by guitarist. __________

Figure 1.3 describes a layout of this multi-effect which shows the switching method using DPDT switches:

![Diagram of Multi-effect using DPDT Switches](image)

Figure 1.3: Multi-effect by Using DPDT Switches

All of these circuits will be simulate using **Multisim** determine the expected output waveform signal. Performing Simulation task will be separate according to each or what types of effect are produced. Designing each of relates effect circuit and combines them together in a gadget by using control switches. Enable each effect to be mix or separate in waveform signal form signal processing.
1.4 Problem Statement

State by the author of *Guitar Effect Pedal*, Dave Hunter, most of multi-effect that in market today are quite expensive to buy, so in this project analog audio signal processing still be use because it quite cheaper and can produce original sound that what musician really need to delivered from their guitar. In case that some guitarist are in passion to produce unique and variety of sound in their music composition, they need to afford each of the effect pedal such as distortion, delay, chorus and wah separately together and this are quite expensive to afford.

Digital Projects for Musician’s author Craig Anderton also discuss in his book that, most of the guitarist concern during creating and searching for the sound that they really want is the lack of store rage in their effect. Beside ordinary effect does not have memory to store their selected sound? During live performance, this is the major factor for them to give the best performance. If they could have an effect that can store their sound so during live performance it is the best way for them. Craig Anderton also state in his book, *Do-It Yourself for Guitarist* that in audio engineering field the most common problem is to reduce noise that comes out from signal processing gadget. In case that is an electric guitar can produce sound as low as 40 Hz and up to 6 or 8 kHz, the major concern in producing guitar effect is to maintain this signal in producing the original clean frequency as low as 40Hz. That why the noise reduction functions is considerable as the solution of this problem.